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Abstract—Because of their capacity-approaching performance
and their complexity/latency advantages, spatially-coupled (SC)
codes are among the most attractive error-correcting codes for
use in modern dense storage devices. SC codes are constructed
by partitioning an underlying block code and coupling the parti-
tioned components. Here, we focus on circulant-based SC codes.
Recently, the optimal overlap (OO)-circulant power optimizer
(CPO) approach was introduced to construct high performance
SC codes for additive white Gaussian noise (AWGN) and Flash
channels. The OO stage operates on the protograph of the
SC code to derive the optimal partitioning that minimizes the
number of detrimental objects. Then, the CPO optimizes the
circulant powers to further reduce this number. Since the nature
of detrimental objects in the graph of a code critically depends
on the characteristics of the channel of interest, extending the
OO-CPO approach to construct SC codes for channels with
intrinsic memory is not a straightforward task. In this paper,
we tackle one relevant extension; we construct high performance
SC codes for practical 1-D magnetic recording channels, i.e.,
partial-response (PR) channels. Via combinatorial techniques,
we carefully build and solve the optimization problem of the
OO partitioning, focusing on the objects of interest in the case
of PR channels. Then, we customize the CPO to further reduce
the number of these objects in the graph of the code. SC codes
designed using the proposed OO-CPO approach for PR channels
outperform prior state-of-the-art SC codes by around 3 orders
of magnitude in frame error rate (FER) and 1.1 dB in signal-to-
noise ratio (SNR), and more intriguingly, outperform structured
block codes of the same length by around 1.6 orders of magnitude
in FER and 0.4 dB in SNR.

I. INTRODUCTION

Similar to other data storage systems, magnetic recording
(MR) systems operate at very low frame error rate (FER)
levels [1], [2]. Consequently, to guarantee high error correction
capability in such systems, binary [2] and non-binary (NB) [3],
[4] graph-based codes are used. The objects that dominate the
error floor region of low-density parity-check (LDPC) codes
simulated in partial-response (PR) and additive white Gaussian
noise (AWGN) systems are different in their combinatorial
nature because of the detector-decoder looping and the intrin-
sic memory in PR systems [5]. In particular, the authors in
[5] introduced balanced absorbing sets (BASs) to characterize
the detrimental objects in the case of PR (1-D MR) channels.
Moreover, the weight consistency matrix (WCM) framework
was introduced to systematically remove any type of absorbing
sets from the graph of an NB-LDPC code [6], [7].

Spatially-coupled (SC) codes [8], [9] are graph-based codes
constructed by partitioning an underlying block code into
components of the same size, then rewiring these components
multiple times [10]. In this work, the underlying block codes,
and consequently our constructed SC codes, are circulant-
based (CB) codes. SC codes offer not only complexity/latency

gains (if windowed decoding [11] is used), but also an
additional degree of freedom in the code design; this added
flexibility is achieved via partitioning of the parity check
matrix of the underlying block code. This observation makes
SC codes receive an increasing level of attention in multiple
applications. Contiguous [10] and non-contiguous [12], [13]
partitioning schemes were introduced in the literature for
various applications. Recently, the optimal overlap (OO)-
circulant power optimizer (CPO) approach was introduced
to design SC codes with superior performance for AWGN
[14] and practical asymmetric Flash [15] channels. The OO
partitioning operates on the protograph to compute the optimal
set of overlap parameters that characterizes the partitioning.
The CPO operates on the unlabeled graph (weights are set
to 1’s) to adjust the circulant powers. The objective is to
minimize the number of instances of a common substructure
that exists in different detrimental objects. If the SC code is
binary, the unlabeled graph is the final graph. If the SC code is
non-binary, the WCM framework [6], [7] is used to optimize
the edge weights after applying the OO-CPO approach.

In this paper, we propose an approach based on tools from
combinatorics, optimization, and graph theory, to construct
high performance SC codes for PR channels. Unlike the case
of AWGN and Flash channels (see [14] and [15]), the common
substructure, whose number of instances we seek to minimize,
in the case of PR channels can appear in different ways
in the protograph of the SC code, making the optimization
problem considerably more challenging. For that reason, we
introduce the concept of the pattern, which is a configuration
in the protograph that can result in instances of the common
substructure in the unlabeled graph of the SC code after lifting.
We derive an optimization problem, in which we express the
weighted sum of the counts (numbers of instances) of all
patterns in terms of the overlap parameters. Then, we compute
the optimal set of overlap parameters (OO) that minimizes this
sum. Moreover, we propose the necessary modifications to the
CPO algorithm presented in [14] and [15] to make it suitable
for the common substructure in the case of PR channels. We
demonstrate the gains achieved by our OO-CPO (-WCM for
NB SC codes) approach through tables and performance plots
that compare our codes not only with SC codes, but also with
CB block codes of the same length and the same rate.

The rest of the paper is organized as follows. Section II
introduces the necessary preliminaries. Different patterns of
the common substructure are discussed in Section III. The
analysis of the optimization problem is presented in Section
IV. The needed modifications over the baseline CPO are



detailed in Section V. We present our experimental results
in Section VI. Finally, the work is concluded in Section VII.

II. PRELIMINARIES

In this section, we review the construction of SC codes
and the definitions of the objects of interest. Here, each row
(resp., column) in a parity-check matrix corresponds to a check
node (CN) (resp., variable node (VN)) in the equivalent Tanner
graph of the matrix. Additionally, each non-zero entry in a
parity-check matrix corresponds to an edge in the equivalent
Tanner graph of the matrix.

Since the contribution of this work (the OO-CPO) is to
optimize the topology of the underlying graph, we will focus
on the unlabeled graphs and binary matrices. Labeled graphs
and non-binary matrices will be discussed as needed. Let H
be the binary parity-check matrix of the underlying regular
CB code that has column weight (VN degree) γ and row
weight (CN degree) κ. This matrix consists of γκ circulants.
Each circulant is of the form σfi,j , where 0 ≤ i ≤ γ − 1,
0 ≤ j ≤ κ − 1, and σ is the z × z identity matrix cyclically
shifted one unit to the left. Circulant powers are fi,j , ∀i, j,
and they are defined, in addition to z, as the lifting parameters.
Separable CB (SCB) codes have fi,j = f(i)f(j), z ≥ κ, and
z prime. The underlying block codes we use to design SC
codes in this work are CB codes with no zero circulants.

The binary SC code is constructed as follows. First, H is
partitioned into (m+1) disjoint components (they all have the
same size as H): H0,H1, . . . ,Hm, where m is defined as the
memory of the SC code. Each component Hy , 0 ≤ y ≤ m,
contains some of the γκ circulants of H and zero circulants
elsewhere such that H =

∑m
y=0 Hy . While we have completed

the framework for any m and γ ≥ 3, for simplicity, we focus
on m = 1 in this paper, i.e., H = H0+H1. Then, H0 and H1

are coupled L times (see [14, Fig. 1]) to construct the binary
parity-check matrix of the SC code, HSC, which is of size
γz(L+1)× κzL. A replica is any γz(L+1)× κz submatrix
of HSC that contains

[
HT

0 HT
1

]T
and zero circulants elsewhere.

Replicas are denoted by Rρ, 1 ≤ ρ ≤ L.
The protograph matrix (PM) of a binary CB matrix is the

matrix resulting from replacing each z × z non-zero circulant
with 1, and each z × z zero circulant with 0. The PMs of H,
H0, and H1 are Hp, Hp

0, and Hp
1, respectively, and they are

all of size γ × κ. The PM of HSC is Hp
SC, and it is of size

γ(L+1)×κL. This Hp
SC also has L replicas, Rρ, 1 ≤ ρ ≤ L,

but with 1× 1 circulants. Non-binary SC (NB-SC) codes can
be constructed from binary SC codes as described in [15] and
guided by [7]. The NB codes we use in this work have parity-
check matrices with their elements in GF(q), and q = 2λ,
where λ ∈ {2, 3, . . . } (in the binary case, q = 2).

A contiguous technique for partitioning H to construct
HSC, namely cutting vector (CV) partitioning, was investi-
gated aiming to generate SC codes for PR channels [10].
Multiple non-contiguous partitioning techniques were recently
introduced in the literature, e.g., minimum overlap (MO)
partitioning [12], general edge spreading [13], in addition to
OO partitioning [14], [15]. These non-contiguous partitioning
techniques significantly outperform contiguous ones [12], [14],

[15]. However, as far as we know, no prior work has proposed
non-contiguous techniques in the context of PR channels. The
goal of this work is to derive the effective OO-CPO approach
for partitioning and lifting to construct high performance SC
codes optimized for PR channels.

The intrinsic memory along with detector-decoder iterations
(global iterations) result in changing the combinatorial proper-
ties of detrimental objects in LDPC codes simulated over PR
channels compared with the case of canonical channels [5]. In
particular, these detrimental objects were shown to be absorb-
ing sets that can have unsatisfied CNs with degrees > 1, while
having a fewer number of unsatisfied (particularly degree-1)
CNs. These objects were named BASs. We now present the
definitions of different objects of interest. Examples on these
objects of interest are in Fig. 1. Let g = bγ−12 c.
Definition 1. Consider a subgraph induced by a subset V of
VNs in the Tanner graph of a code. Set all the VNs in V to
values ∈ GF(q)\{0} and set all other VNs to 0. The set V
is said to be an (a, b, d1, d2, d3) balanced absorbing set of
type two (BAST) over GF(q) if the size of V is a, the number
of unsatisfied CNs connected to V is b, 0 ≤ b ≤ bag2 c, the
number of degree-1 (resp., 2 and > 2) CNs connected to V
is d1 (resp., d2 and d3), d2 > d3, all the unsatisfied CNs
connected to V (if any) have either degree 1 or degree 2,
and each VN in V is connected to strictly more satisfied than
unsatisfied neighboring CNs (for some set of VN values).

While the above definition was introduced in the context of
non-binary codes [5], it is valid in the binary case as well (set
q = 2). An (a, d1, d2, d3) unlabeled BAST (UBS) is a BAST
with the weights of all edges of its graph replaced by 1’s. All
our abbreviations are short-handed for simplicity.

Definition 2. Let V be a subset of VNs in the unlabeled
(binary) Tanner graph of a code. LetO (resp., T andH) be the
set of degree-1 (resp., 2 and > 2) CNs connected to V . This
graphical configuration is an (a, d1) unlabeled elementary
trapping set (UTS) if |V| = a, |O| = d1, and |H| = 0. A UTS
is an unlabeled elementary absorbing set (UAS) if each VN
in V is connected to strictly more neighbors in T than in O.

A binary protograph configuration is also defined by (a, d1)
for simplicity. The WCM framework removes a BAST from
the graph of an NB code by careful processing of its edge
weights (see [5], [6], and [7] for details).

III. THE COMMON SUBSTRUCTURE AND ITS PATTERNS

The idea of focusing on a common substructure in the
design of the unlabeled graph of an SC code simplifies the
optimization procedure. Additionally, minimizing the number
of instances of the common substructure significantly reduces
the multiplicity of several different types of detrimental objects
simultaneously [10], [14], which is a lot more feasible com-
pared with operating on all these detrimental objects separately
(especially for partitioning). It was shown in [10] that the
(4, 4(γ−2)) UAS/UTS, γ ≥ 3, is the common substructure of
interest for PR channels (unlike the case for AWGN [13], [14]
and Flash channels [15], where the substructure of interest is



the (3, 3(γ− 2))). Fig. 1 shows UBSs of multiple detrimental
BASTs for codes with γ ∈ {3, 4} simulated over PR channels,
demonstrating that the common substructure of interest is the
(4, 4(γ − 2)) UAS/UTS.

We note that the (4, 4(γ−2)) UAS/UTS is a cycle of length
8 with no internal connections (ignore degree-1 CNs). From
[16] (see also [15]), it is known that each cycle in the unlabeled
graph (the graph of HSC) is derived from a configuration in
the protograph (the graph of the PM Hp

SC) under specific
conditions on the powers of the circulants involved in that
cycle. Thus, in the OO stage, we operate on the protograph.
Then, in the CPO stage, we operate on the circulant powers.
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Fig. 1. The UBSs of multiple detrimental BASTs and the associated common
substructures. Upper panel (γ = 3): two non-isomorphic (6, 0, 9, 0) UBSs,
and the common substructure is the (4, 4) UAS. Lower panel (γ = 4): an
(8, 2, 15, 0) UBS and a (10, 0, 20, 0) UBS, and the common substructure is
the (4, 8) UTS. Common substructures are marked with dashed lines. Internal
connections in a cycle of length 8 are shown in dotted green lines.

Remark 1. Let x− be an integer s.t. 0 ≤ x− ≤ x. Note that
a (4−, 4(γ − 2)

−
) configuration in the protograph of the code

can result in (4, 4(γ− 2)) UASs/UTSs in the unlabeled graph
depending on the circulant power arrangement. Thus, in the
OO stage, we operate on all protograph configurations that
can result in (4, 4(γ−2)) UASs/UTSs (cycles of length 8 with
no internal connections) in the unlabeled graph, including the
protograph configurations that do have internal connections.
Then in the CPO stage, we treat the (4, 4(γ− 2)) UASs/UTSs
and the (4, 4(γ − 2) − 2δ) UASs/UTSs differently, where δ ∈
{1, 2} is the number of existing internal connections in the
configuration after lifting.

The major difference between the (4, 4(γ − 2)) UAS/UTS
and the (3, 3(γ − 2)) UAS/UTS is that there are multiple
configurations in the protograph that can generate the former
object in the unlabeled graph. We call these different config-
urations patterns. A pattern is defined by the dimensions of
the matrix of its subgraph. The following lemma investigates
the number and nature of these patterns.

Lemma 1. The number of distinct patterns (with different
dimensions) in the protograph of a code that can result in
(4, 4(γ − 2)) UASs/UTSs in the unlabeled graph of the code
after lifting is 9, in the case of γ ≥ 4. The numbers of CNs
and VNs in these 9 patterns are both in {2, 3, 4}. This number
of distinct patterns reduces to 7 in the case of γ = 3.

Proof. Since the objects of interest in the unlabeled graph are
cycles of length 8 with 4 CNs and 4 VNs, a protograph pattern
that can generate some of them must have at most 4 CNs and 4
VNs. Moreover, to result in cycles of length 8 after lifting, the
pattern must have at least 2 CNs and 2 VNs. Combining these
two statements yields that the numbers of CNs and VNs of a
protograph pattern that can result in (4, 4(γ−2)) UASs/UTSs
in the unlabeled graph must be in {2, 3, 4}.

Consequently, in order to have 9 patterns for the case of
γ ≥ 4, we show that selecting any number of CNs in {2, 3, 4}
and any number of VNs in {2, 3, 4} can result in a pattern
(or more) that is capable of generating cycles of length 8 in
the unlabeled graph. Fig. 2 demonstrates the above statement,
focusing on the matrix representation of patterns and cycles.
In the case of γ = 3, a pattern cannot have 4 ones in a column,
which reduces the number of patterns to 7. �

We define the 9 patterns according to the dimensions of
their submatrices as follows. Pattern P1 is 2 × 2, Pattern P2

is 2× 3, Pattern P3 is 3× 2, Pattern P4 is 2× 4, Pattern P5

is 4× 2, Pattern P6 is 3× 3, Pattern P7 is 3× 4, Pattern P8

is 4× 3, and Pattern P9 is 4× 4 (all illustrated in Fig. 2).
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Fig. 2. The 9 protograph patterns that can result in cycles of length 8 in the
unlabeled graph after lifting. One way of traversing each pattern to generate
cycles of length 8 is depicted in red. Note that only Pattern P9 represents a
cycle of length 8 in the protograph.

Remark 2. Following the same logic we used in Lemma 1 and
its proof for the (3, 3(γ − 2)) UAS/UTS, leads to a possibility
to also have patterns for this case, with the number of CNs
and VNs in {2, 3}. However, a careful analysis guides to the
fact that only one protograph pattern can result in (3, 3(γ−2))
UASs/UTSs (cycles of length 6) after lifting, which is the 3×3
pattern, and it is itself a cycle of length 6 [14], [15].

The following lemma discusses the relation between differ-
ent protograph patterns and the resulting cycles after lifting.
Define a cycle-8 candidate of Pattern P` as a way to traverse



P` in order to reach a cycle of length 8 in the unlabeled graph
of the code after lifting. Some candidates are shown in Fig. 2.
Lemma 2. Let ζP` be the number of distinct cycle-8 candi-
dates of Pattern P`. Then,

ζP` =


1, ` ∈ {1, 6, 9},
2, ` ∈ {7, 8},
3, ` ∈ {2, 3},
6, ` ∈ {4, 5}.

(1)

Proof. We define a cycle-8 candidate according to the connec-
tivity as follows: c1−v1−c2−v2−c3−v3−c4−v4 (each CN
connects the next two VNs in a circular fashion, see Fig. 1).
From Fig. 2, there is only one cycle-8 candidate for Pattern P1,
which is c1−v1−c2−v2−c1−v1−c2−v2, and this is the case
for all square patterns. Thus, ζP` = 1 for ` ∈ {1, 6, 9}. It can
be understood from Fig. 2 that ζP` 6= 1 for all the remaining
patterns. In particular, we have two cycle-8 candidates for
Pattern P7, that are: c1− v1− c2− v2− c1− v3− c3− v4 and
c1−v1−c2−v3−c1−v2−c3−v4 (which is the red cycle on
P7 in Fig. 2). The situation is the same for Pattern P8 because
it is the transpose of P7. Thus, ζP` = 2 for ` ∈ {7, 8}. The
rest of the cases can be derived similarly. �

Pattern P1 has ζP` = 1 (see (1)), and it results in z/2 or 0
cycles of length 8 after lifting (since P1 is only 2× 2), while
all the remaining patterns result in z or 0 cycles of length
8 after lifting [15], [16]. Thus, we define the pattern weight,
βP` , which plays an important role in the discrete optimization
problem of the OO, as follows:

βP` =

{
1/2, ` = 1,
ζP` , ` ∈ {2, 3, 4, 5, 6, 7, 8, 9}. (2)

IV. OO: BUILDING AND SOLVING THE OPTIMIZATION
PROBLEM

Now, we are ready to build the optimization problem. Con-
sider the protograph of an SC code. The weighted sum of the
total number of instances of all patterns is given by:

Ftot =

9∑
`=1

βP`FP` , (3)

where FP` is the total number of instances of Pattern P`. The
goal is to express Ftot, through FP` , ∀`, as a function of the
overlap parameters, then finding the optimal set of overlap
parameters that minimize Ftot for OO partitioning. We first
recall the definition and the properties of overalp parameters.
More details on that part can be found in [14].

Definition 3. For m = 1, let Π =
[
HT

0 HT
1

]T
, and let Πp

be its PM (of size 2γ × κ). A degree-µ overlap among µ
rows (or CNs) of Πp indexed by {i1, . . . , iµ}, 1 ≤ µ ≤ γ,
0 ≤ i1, . . . , iµ ≤ 2γ − 1, is defined as a position (column)
in which all these rows have 1’s simultaneously. A degree-
µ overlap parameter, t{i1,...,iµ}, is defined as the number of
degree-µ overlaps among the rows indexed by {i1, . . . , iµ} in
Πp. A degree-1 overlap parameter ti1 , 0 ≤ i1 ≤ 2γ − 1, is
defined as the number of 1’s in row i1 of Πp.

Note that a degree-µ overlap parameter, if µ > 1, is always
zero if in the set {i1, . . . , iµ} there exists at least one pair

of distinct row indices, say (iτ1 , iτ2), with the property that
iτ1 ≡ iτ2 (mod γ) [14]. Define the set of non-zero overlap
parameters as O. The parameters in O are not all independent.
The set of independent non-zero overlap parameters, Oind, is:

Oind ={t{i1,...,iµ} s.t. 1 ≤ µ ≤ γ, 0 ≤ i1, . . . , iµ ≤ γ − 1,

∀{iτ1 , iτ2} ⊂ {i1, . . . , iµ}, iτ1 6≡ iτ2 (mod γ)}. (4)

The other non-zero overlap parameters in O\Oind are obtained
from the parameters in Oind according to [14, Lemma 3]. Since
we are focusing on m = 1, the cardinality of the set Oind,
which determines the complexity of the discrete optimization
problem of the OO stage, is given by:

Nind = |Oind| =
γ∑
µ=1

(
γ

µ

)
(5)

As demonstrated in Fig. 2, for all the patterns of interest, the
highest overlap degree is µ = 4 (a pattern has at most 4 CNs).
Note that while the overlap parameters themselves must be
restricted to Πp, the concept of the degree-µ overlap can be
generalized from Πp to the PM of the SC code, Hp

SC. We will
use this generalization in the analysis of patterns.

We aim at expressing FP` , ∀`, in terms of the parameters
in Oind. Let Rr be a replica in which at least one VN of the
pattern being studied exists. We call Rr the reference replica.
Moreover, let the CNs (or rows) of the pattern be of the form
ck = (r − 1)γ + ik, 1 ≤ k ≤ 4. For two replicas Rρ and
Rν , define θρ,ν = ρ − ν. In the following, we consider the
protograph of an SC code with parameters γ ≥ 3, κ, m = 1,
L ≥ 3, and O. We define [x]+ = max{x, 0}, and F kP`,1 as the
number of instances of Pattern P` that starts at replica R1 and
spans k consecutive replicas. Note that each VN in a pattern
corresponds to an overlap (see Fig. 2).

The counts of different existence possibilities of the nine
patterns in addition to the final formulas of FP` , ∀`, are
presented in the forthcoming subsections.

A. Analysis of Pattern P1 (size 2× 2)

This pattern has two VNs that are adjacent (connected via
at least one path of only one CN). Thus, Pattern P1 has its
VNs located in at most two replicas, and the pattern spans
(i.e., its VNs span) at most m + 1 = 2 consecutive replicas
(see [14, Lemma 1]). Suppose P1 has the CNs c1 and c2. The
two overlaps forming the pattern are of degree-2, and they are
both c1 − c2 overlaps (among c1 and c2).

Lemma 3. Case 1.1: The number of instances of P1 with CNs
c1 and c2, and all overlaps in one replica, Rr, is:

AP1

(
t{i1,i2}

)
=

(
t{i1,i2}

2

)
. (6)

Case 1.2: The number of instances of P1 with CNs c1 and c2,
and all overlaps in two replicas, Rr and Re, r < e, is:

BP1

(
t{i1,i2}, t{i1+θr,eγ,i2+θr,eγ}

)
= t{i1,i2}t{i1+θr,eγ,i2+θr,eγ}. (7)



Proof. In Case 1.1, the number we are after is the number
of ways to choose 2 overlaps out of t{i1,i2} overlaps, which
is given by (6). In Case 1.2, the number we are after is the
number of ways to choose 1 overlap out of t{i1,i2} and 1
overlap out of t{i1+θr,eγ,i2+θr,eγ}, which is given by (7). �

Theorem 1. The total number of instances of Pattern P1 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP1 =

2∑
k=1

(L− k + 1)F kP1,1, (8)

where F kP1,1
, k ∈ {1, 2}, are given by:

F 1
P1,1 =

∑
{i1,i2}⊂{0,...,2γ−1}

AP1

(
t{i1,i2}

)
,

F 2
P2,1 =

∑
{i1,i2}⊂{γ,...,2γ−1}

BP1

(
t{i1,i2}, t{i1−γ,i2−γ}

)
, (9)

with i1 6= i2, where i = (i mod γ).

Proof. To compute FP1
, we use the formula in [14, Theorem

1], with χ, which is the maximum number of replicas the
pattern can span, equals 2. Then, F 1

P1,1
(resp., F 2

P1,1
) is the

sum of function AP1
(resp., BP1

) over all possible values of
{i1, i2} (the degree-2 overlap indices in Πp). �

B. Analysis of Pattern P2 (size 2× 3)

This pattern has three VNs, with each pair of them being
adjacent. Thus, P2 spans at most 2 consecutive replicas, which
also means its VNs are located in at most 2 replicas. Suppose
P2 has the CNs c1 and c2. The three overlaps forming P2 are
of degree-2, and they are all c1 − c2 overlaps.

Lemma 4. Case 2.1: The number of instances of P2 with CNs
c1 and c2, and all overlaps in one replica, Rr, is:

AP2

(
t{i1,i2}

)
=

(
t{i1,i2}

3

)
. (10)

Case 2.2: The number of instances of P2 with CNs c1 and c2,
and all overlaps in two replicas, s.t. two overlaps are in Rr,
and one overlap is in Re, is:

BP2

(
t{i1,i2}, t{i1+θr,eγ,i2+θr,eγ}

)
=

(
t{i1,i2}

2

)
t{i1+θr,eγ,i2+θr,eγ}. (11)

Proof. In Case 2.1, the number we are after is the number
of ways to choose 3 overlaps out of t{i1,i2} overlaps, which
is given by (10). In Case 2.2, the number we are after is
the number of ways to choose 2 overlap out of t{i1,i2} and 1
overlap out of t{i1+θr,eγ,i2+θr,eγ}, which is given by (11). �

Theorem 2. The total number of instances of Pattern P2 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP2
=

2∑
k=1

(L− k + 1)F kP2,1, (12)

where F kP2,1
, k ∈ {1, 2}, are given by:

F 1
P2,1 =

∑
{i1,i2}⊂{0,...,2γ−1}

AP2

(
t{i1,i2}

)
,

F 2
P2,1 =

∑
{i1,i2}⊂{γ,...,2γ−1}

BP2

(
t{i1,i2}, t{i1−γ,i2−γ}

)
+

∑
{i1,i2}⊂{0,...,γ−1}

BP2

(
t{i1,i2}, t{i1+γ,i2+γ}

)
, (13)

with i1 6= i2.

Proof. To compute FP2
, we use the formula in [14, Theorem

1], with χ = 2. Then, F 1
P2,1

is the sum of function AP2
over

all possible values of {i1, i2}. Regarding F 2
P2,1

, we need to
distinguish between two situations; when r < e (i.e., replica
Rr, which has two overlaps, comes before replica Re), and
when r > e (i.e., replica Rr comes after replica Re). This
distinction gives the two summations of function BP2

in (13).
�

C. Analysis of Pattern P3 (size 3× 2)

This pattern has two VNs that are adjacent. Thus, Pattern P3

spans at most 2 consecutive replicas. Suppose P3 has the CNs
c1, c2, and c3. The two overlaps forming P3 are of degree-3,
and they are all c1 − c2 − c3 overlaps.

Lemma 5. Case 3.1: The number of instances of P3 with CNs
c1, c2, and c3, and all overlaps in one replica, Rr, is:

AP3

(
t{i1,i2,i3}

)
=

(
t{i1,i2,i3}

2

)
. (14)

Case 3.2: The number of instances of P3 with CNs c1, c2, and
c3, and all overlaps in two replicas, Rr and Re, r < e, is:

BP3

(
t{i1,i2,i3}, t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}

)
= t{i1,i2,i3}t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}. (15)

Proof. In Case 3.1, Rr, the number we are after is the number
of ways to choose 2 overlaps out of t{i1,i2,i3}, which is given
by (14). In Case 3.2, the number we are after is the number of
ways to choose 1 overlap out of t{i1,i2,i3} and 1 overlap out
of t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}, which is given by (15). �

Theorem 3. The total number of instances of Pattern P3 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP3
=

2∑
k=1

(L− k + 1)F kP3,1, (16)

where F kP3,1
, k ∈ {1, 2}, are given by:

F 1
P3,1 =

∑
{i1,i2,i3}⊂{0,...,2γ−1}

AP3

(
t{i1,i2,i3}

)
,

F 2
P3,1 =

∑
{i1,i2,i3}⊆{γ,...,2γ−1}

BP3

(
t{i1,i2,i3}, t{i1−γ,i2−γ,i3−γ}

)
, (17)

with i1 6= i2, i1 6= i3, and i2 6= i3.



Proof. To compute FP3
, we use the formula in [14, Theorem

1], with χ = 2. Then, F 1
P3,1

(resp., F 2
P3,1

) is the sum of func-
tion AP3 (resp., BP3 ) over all possible values of {i1, i2, i3}
(the degree-3 overlap indices in Πp). �

D. Analysis of Pattern P4 (size 2× 4)

This pattern has four VNs, with each pair of them being
adjacent. Consequently, P4 spans at most 2 consecutive repli-
cas. Suppose P4 has the CNs c1 and c2. The four overlaps
forming P4 are of degree-2, and they are all c1− c2 overlaps.

Lemma 6. Case 4.1: The number of instances of P4 with CNs
c1 and c2, and all overlaps in one replica, Rr, is:

AP4

(
t{i1,i2}

)
=

(
t{i1,i2}

4

)
. (18)

Case 4.2: The number of instances of P4 with CNs c1 and c2,
and all overlaps in two replicas, s.t. three overlaps are in Rr,
and one overlap is in Re, is:

BP4

(
t{i1,i2}, t{i1+θr,eγ,i2+θr,eγ}

)
=

(
t{i1,i2}

3

)
t{i1+θr,eγ,i2+θr,eγ}. (19)

Case 4.3: The number of instances of P4 with CNs c1 and c2,
and all overlaps in two replicas, s.t. two overlaps are in Rr,
and two overlaps are in Re, r < e, is:

CP4

(
t{i1,i2}, t{i1+θr,eγ,i2+θr,eγ}

)
=

(
t{i1,i2}

2

)(
t{i1+θr,eγ,i2+θr,eγ}

2

)
. (20)

Proof. In Case 4.1, the number we are after is the number of
ways to choose 4 overlaps out of t{i1,i2}, which is given by
(18). In Case 4.2, the number we are after is the number of
ways to choose 3 overlaps out of t{i1,i2} and 1 overlap out of
t{i1+θr,eγ,i2+θr,eγ}, which is given by (19). In Case 4.3, the
number we are after is the number of ways to choose 2 over-
laps out of t{i1,i2} and 2 overlaps out of t{i1+θr,eγ,i2+θr,eγ},
which is given by (20). �

Theorem 4. The total number of instances of Pattern P4 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP4
=

2∑
k=1

(L− k + 1)F kP4,1, (21)

where F kP4,1
, k ∈ {1, 2}, are given by:

F 1
P4,1 =

∑
{i1,i2}⊂{0,...,2γ−1}

AP4

(
t{i1,i2}

)
,

F 2
P4,1 =

∑
{i1,i2}⊂{γ,...,2γ−1}

BP4

(
t{i1,i2}, t{i1−γ,i2−γ}

)
+

∑
{i1,i2}⊂{0,...,γ−1}

BP4

(
t{i1,i2}, t{i1+γ,i2+γ}

)
+

∑
{i1,i2}⊂{γ,...,2γ−1}

CP4

(
t{i1,i2}, t{i1−γ,i2−γ}

)
, (22)

with i1 6= i2.

Proof. To compute FP4
, we use the formula in [14, Theorem

1], with χ = 2. Then, F 1
P4,1

is the sum of function AP4
over

all possible values of {i1, i2}. Regarding F 2
P4,1

, we need to
account for Case 4.2 and Case 4.3. For Case 4.2, we need to
distinguish between two situations; when r < e (i.e., replica
Rr, which has three overlaps, comes before replica Re), and
when r > e (i.e., replica Rr comes after replica Re). This
distinction gives the two summations of function BP4

in (21).
This distinction is not needed for Case 4.3 since the two
replicas have the same number of degree-2 overlaps. �

E. Analysis of Pattern P5 (size 4× 2)

This pattern has two adjacent VNs. Thus, Pattern P5 spans
at most 2 consecutive replicas. Pattern P5 does not exist in
the case of γ = 3. Suppose P5 has the CNs c1, c2, c3, and c4.
The two overlaps forming P5 are of degree-4, and they are all
c1 − c2 − c3 − c4 overlaps.

Lemma 7. Case 5.1: The number of instances of P5 with CNs
c1, c2, c3, and c4, and all overlaps in one replica, Rr, is:

AP5

(
t{i1,i2,i3,i4}

)
=

(
t{i1,i2,i3,i4}

2

)
. (23)

Case 5.2: The number of instances of P5 with c1, c2, c3, and
c4, and all overlaps in two replicas, Rr and Re, r < e, is:

BP5

(
t{i1,i2,i3,i4}, t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}

)
= t{i1,i2,i3,i4}t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}. (24)

Proof. In Case 5.1, Rr, the number we are after is the number
of ways to choose 2 overlaps out of t{i1,i2,i3,i4}, which is given
by (23). In Case 5.2, the number we are after is the number
of ways to choose 1 overlap out of t{i1,i2,i3,i4} and 1 overlap
out of t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}, given in (24). �

Theorem 5. The total number of instances of Pattern P5 in the
binary protograph of an SC code that has parameters γ ≥ 4,
κ, m = 1, L ≥ 3, and O, is:

FP5
=

2∑
k=1

(L− k + 1)F kP5,1, (25)

where F kP5,1
, k ∈ {1, 2}, are given by:

F 1
P5,1 =

∑
{i1,i2,i3,i4}⊂{0,...,2γ−1}

AP5

(
t{i1,i2,i3,i4}

)
,

F 2
P5,1 =

∑
{i1,i2,i3,i4}⊆{γ,...,2γ−1}

BP5

(
t{i1,i2,i3,i4}, t{i1−γ,i2−γ,i3−γ,i4−γ}

)
,

(26)

with i1 6= i2, i1 6= i3, i1 6= i4, i2 6= i3, i2 6= i4, and i3 6= i4.

Proof. To compute FP5 , we use the formula in [14, Theorem
1], with χ = 2. Then, F 1

P5,1
(resp., F 2

P5,1
) is the sum of func-

tion AP5
(resp., BP5

) over all possible values of {i1, i2, i3, i4}
(the degree-4 overlap indices in Πp). �



F. Analysis of Pattern P6 (size 3× 3)

This pattern has three VNs, with each pair of them being
adjacent. Thus, P6 spans at most 2 consecutive replicas. Sup-
pose P6 has the CNs c1, c2, and c3. Define distinct overlaps
to be overlaps from different families, i.e., overlaps between
different sets of CNs. Pattern P6 is formed of three overlaps;
two (distinct) of degree-2 and one of degree-3. Define c1 as the
CN connecting the three VNs. Thus, the overlaps are c1− c2,
c1 − c3, and c1 − c2 − c3 (see P6 in Fig. 2). Again, each VN
corresponds to an overlap.

Lemma 8. Case 6.1: The number of instances of P6 with CNs
c1, c2, and c3 as defined in the previous paragraph, and all
overlaps in one replica, Rr, is:

AP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
= t{i1,i2,i3}

(
t{i1,i2,i3} − 1

)+ (
t{i1,i2,i3} − 2

)+
+ t{i1,i2,i3}

(
t{i1,i3} − t{i1,i2,i3}

) (
t{i1,i2,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i2,i3}

(
t{i1,i2,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

) (
t{i1,i3} − t{i1,i2,i3}

)
t{i1,i2,i3}.

(27)

Case 6.2: The number of instances of P6 with CNs c1, c2, and
c3 as defined in the previous paragraph, and all overlaps in
two replicas, s.t. the two degree-2 overlaps are in Rr, and the
degree-3 overlap is in Re, is:

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}

)
=
[
t{i1,i2,i3}

(
t{i1,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i3}

]
· t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}. (28)

Case 6.3: The number of instances of P6 with CNs c1, c2, and
c3 as defined in the previous paragraph, and all overlaps in
two replicas, s.t. the degree-3 overlap and the c1− c2 overlap
are in Rr, and the c1 − c3 overlap is in Re, is:

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+θr,eγ,i3+θr,eγ}

)
= t{i1,i2,i3}

(
t{i1,i2} − 1

)+
t{i1+θr,eγ,i3+θr,eγ}. (29)

Proof. In Case 6.1, the number we are after is the number of
ways to choose 1 overlap from each family (there exist three
different families for P6). In order to avoid over-counting, it
is required to distinguish between the two situations when a
degree-2 overlap (c1 − c2 or c1 − c3) is part of a c1 − c2 − c3
degree-3 overlap, and when this is not the case. Taking this
requirement into account yields the four added terms in (27).
The same applies for Case 6.2, with the exception that here the
degree-3 overlap is chosen from t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}
overlaps, which reduces the number of added terms to the
two in (28). Following the same logic gives (29). �

Theorem 6. The total number of instances of Pattern P6 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP6
=

2∑
k=1

(L− k + 1)F kP6,1, (30)

where F kP6,1
, k ∈ {1, 2}, are given by:

F 1
P6,1 =

∑
i1∈{0,...,2γ−1},{i2,i3}⊂{0,...,2γ−1}

AP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
,

F 2
P6,1 =

∑
i1∈{γ,...,2γ−1},{i2,i3}⊂{γ,...,2γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i2−γ,i3−γ}

)
+
∑

i1∈{0,...,γ−1},{i2,i3}⊂{0,...,γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+γ,i2+γ,i3+γ}

)
+
∑

i1∈{γ,...,2γ−1},i2∈{0,...,2γ−1},i3∈{γ,...,2γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1−γ,i3−γ}

)
+
∑

i1∈{0,...,γ−1},i2∈{0,...,2γ−1},i3∈{0,...,γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+γ,i3+γ}

)
, (31)

with i1 6= i2, i1 6= i3, and i2 6= i3.

Proof. To compute FP6
, we use the formula in [14, Theorem

1], with χ = 2. Then, F 1
P6,1

is the sum of function AP6
over

all possible values of i1 and {i2, i3}. In Pattern P6, CN c1,
which connects all three VNs, is different from the other two
CNs. Moreover, in a group of three CNs that can form P6, c1
can be any one of these three CNs. These facts are the reason
why i1 of c1 has to be separated from {i2, i3}, despite having
the same range, in the expression of F 1

P6,1
. Regarding F 2

P6,1
,

we need to account for Case 6.2 and Case 6.3. For each case
of the two, we need to distinguish between two situations;
when r < e and when r > e. This distinction gives the four
summations of F 2

P6,1
in (31). Note that the ranges of i2 and

i3 are different in Case 6.3, unlike Case 6.2. �

G. Analysis of Pattern P7 (size 3× 4)

This pattern has four VNs, with each pair of them being
adjacent. Consequently, P7 spans at most 2 consecutive repli-
cas. Suppose P7 has the CNs c1, c2, and c3. The pattern is
formed of four degree-2 overlaps that are evenly distributed
over two different families. Define c1 as the CN connecting
the four VNs. Thus, the overlaps are two c1 − c2 and two
c1 − c3 overlaps (see P7 in Fig. 2 for clarification).

Lemma 9. Case 7.1: The number of instances of P7 with CNs
c1, c2, and c3 as defined in the previous paragraph, and all
overlaps in one replica, Rr, is:

AP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
=

(
t{i1,i2,i3}

2

)((
t{i1,i3} − 2

)+
2

)
+ t{i1,i2,i3}

(
t{i1,i2} − t{i1,i2,i3}

)((t{i1,i3} − 1
)+

2

)
+

(
t{i1,i2} − t{i1,i2,i3}

2

)(
t{i1,i3}

2

)
. (32)

Case 7.2: The number of instances of P7 with CNs c1, c2, and
c3 as defined in the previous paragraph, and all overlaps in
two replicas, s.t. three overlaps are in Rr, and one c1 − c3
overlap is in Re, is:



BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+θr,eγ,i3+θr,eγ}

)
=

[(
t{i1,i2,i3}

2

)(
t{i1,i3} − 2

)+
+ t{i1,i2,i3}

(
t{i1,i2} − t{i1,i2,i3}

) (
t{i1,i3} − 1

)+
+

(
t{i1,i2} − t{i1,i2,i3}

2

)
t{i1,i3}

]
t{i1+θr,eγ,i3+θr,eγ}.

(33)

Case 7.3: The number of instances of P7 with CNs c1, c2, and
c3 as defined in the previous paragraph, and all overlaps in
two replicas, s.t. the two c1 − c2 overlaps are in Rr, and the
two c1 − c3 overlaps are in Re, r < e, is:

CP7

(
t{i1,i2}, t{i1+θr,eγ,i3+θr,eγ}

)
=

(
t{i1,i2}

2

)(
t{i1+θr,eγ,i3+θr,eγ}

2

)
. (34)

Case 7.4: The number of instances of P7 with CNs c1, c2, and
c3 as defined in the previous paragraph, and all overlaps in
two replicas, s.t. two distinct overlaps (from different families)
are in Rr, and two distinct overlaps are in Re, r < e, is:

DP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+θr,eγ,i2+θr,eγ}

, t{i1+θr,eγ,i3+θr,eγ}, t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}
)

=
[
t{i1,i2,i3}

(
t{i1,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i3}

]
·
[
t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}

(
t{i1+θr,eγ,i3+θr,eγ} − 1

)+
+
(
t{i1+θr,eγ,i2+θr,eγ} − t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ}

)
· t{i1+θr,eγ,i3+θr,eγ}

]
. (35)

Proof. In Case 7.1, the number we are after is the number of
ways to choose 2 overlaps from each family (the pattern has
two c1 − c2 overlaps and two c1 − c3 overlaps). In order to
avoid over-counting, it is required to distinguish between the
three situations when the two c1 − c2 overlaps are each part
of a c1 − c2 − c3 degree-3 overlap, when only one c1 − c2
overlap is part of a c1 − c2 − c3 overlap, and when neither
of them is. Taking this requirement into account yields the
three added terms in (32). The same applies for Case 7.2,
with the exception that here one c1−c3 overlap is chosen from
t{i1+θr,eγ,i3+θr,eγ} overlaps. In Case 7.3, there is no need to
make this distinction. Finally, in Case 7.4, the distinction is
applied separately on the c1−c2 overlap in Rr and the c1−c2
overlap in Re to give (35). �

Theorem 7. The total number of instances of Pattern P7 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP7 =

2∑
k=1

(L− k + 1)F kP7,1, (36)

where F kP7,1
, k ∈ {1, 2}, are given by:

F 1
P7,1 =

∑
i1∈{0,...,2γ−1},{i2,i3}⊂{0,...,2γ−1}

AP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
,

F 2
P7,1 =

∑
i1∈{γ,...,2γ−1},i2∈{0,...,2γ−1},i3∈{γ,...,2γ−1}

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i3−γ}

)
+
∑

i1∈{0,...,γ−1},i2∈{0,...,2γ−1},i3∈{0,...,γ−1}

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+γ,i3+γ}

)
+
∑

i1∈{γ,...,2γ−1},i2∈{0,...,2γ−1},i3∈{γ,...,3γ−1}

CP7

(
t{i1,i2}, t{i1−γ,i3−γ}

)
+
∑

i1∈{γ,...,2γ−1},{i2,i3}⊂{γ,...,2γ−1}

DP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i2−γ}

, t{i1−γ,i3−γ}, t{i1−γ,i2−γ,i3−γ}
)
, (37)

with i1 6= i2, i1 6= i3, and i2 6= i3.

Proof. To compute FP7
, we use the formula in [14, Theorem

1], with χ = 2. Then, F 1
P7,1

is the sum of function AP7 over
all possible values of i1 and {i1, i2}. In Pattern P7, CN c1,
which connects all four VNs, is different from the other two
CNs. Moreover, in a group of three CNs that can form P7,
c1 can be any one of these three CNs. These facts are again
the reason why i1 of c1 has to be separated from {i2, i3} in
the expression of F 1

P7,1
. Regarding F 2

P7,1
, we need to account

for Case 7.2, Case 7.3, and Case 7.4. For Case 7.2, we need
to distinguish between two situations; when r < e and when
r > e, which gives the two summations of BP7 in (37). This
distinction is not needed for neither Case 7.3 nor Case 7.4
since the two replicas have the same number and connectivity
of degree-2 overlaps. Note that c2 and c3 are not adjacent (no
path of only one VN connects them) in P7, which means it is
possible to have i2 = i3, but not i2 = i3, for that pattern. �

H. Analysis of Pattern P8 (size 4× 3)

This pattern has three VNs, and the adjacent pairs are v1−v2
and v1 − v3 (not all pairs) according to P8 in Fig. 2. Thus,
P8 spans at most 2m + 1 = 3 consecutive replicas (see [14,
Lemma 1]). Pattern P8 does not exist in the case of γ = 3.
Suppose P8 has the CNs c1, c2, c3, and c4. The pattern is
formed of three overlaps, two of degree-2 and one of degree-4.
The degree-2 overlaps are not only distinct, but also mutually
exclusive (i.e., they do not share any CNs). Define the CNs
such that c1 and c2 are directly connected twice, which is the
same for c3 and c4. Thus, the overlaps are c1 − c2, c3 − c4,
and c1 − c2 − c3 − c4 (see also P8 in Fig. 2).

Lemma 10. Case 8.1: The number of instances of P8 with
CNs c1, c2, c3, and c4 as defined in the previous paragraph,
and all overlaps in one replica, Rr, is:

AP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

)
= t{i1,i2,i3,i4}

(
t{i1,i2,i3,i4} − 1

)+ (
t{i1,i2,i3,i4} − 2

)+
+ t{i1,i2,i3,i4}

(
t{i3,i4} − t{i1,i2,i3,i4}

) (
t{i1,i2,i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

(
t{i1,i2,i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

) (
t{i3,i4} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}.

(38)



Case 8.2: The number of instances of P8 with CNs c1, c2, c3,
and c4 as defined in the previous paragraph, and all overlaps
in two replicas, s.t. the two degree-2 overlaps are in Rr, and
the degree-4 overlap is in Re, is:

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

, t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}
)

=
[
t{i1,i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i3,i4}

]
· t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}. (39)

Case 8.3: The number of instances of P8 with CNs c1, c2, c3,
and c4 as defined in the previous paragraph, and all overlaps
in two replicas, s.t. the degree-4 overlap and the c1−c2 overlap
are in Rr, and the c3 − c4 overlap is in Re, is:

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3+θr,eγ,i4+θr,eγ}

)
= t{i1,i2,i3,i4}

(
t{i1,i2} − 1

)+
t{i3+θr,eγ,i4+θr,eγ}. (40)

Case 8.4: The number of instances of P8 with c1, c2, c3, and
c4 as defined previously, and all overlaps in three replicas, s.t.
the c1 − c2 overlap is in Rr, the c3 − c4 overlap is in Re,
and the degree-4 overlap is in Rs, r < e, is:

DP8

(
t{i1,i2}, t{i3+θr,eγ,i4+θr,eγ}

, t{i1+θr,sγ,i2+θr,sγ,i3+θr,sγ,i4+θr,sγ}
)

= t{i1,i2}t{i3+θr,eγ,i4+θr,eγ}

· t{i1+θr,sγ,i2+θr,sγ,i3+θr,sγ,i4+θr,sγ}. (41)

Proof. In Case 8.1, the number we are after is the number
of ways to choose 1 overlap from each family (there exist
three different families for P8). In order to avoid over-
counting, it is required to distinguish between the two sit-
uations when a degree-2 overlap (c1 − c2 or c3 − c4) is
part of a c1 − c2 − c3 − c4 degree-4 overlap, and when
this is not the case. Taking this requirement into account
yields the four added terms in (38). The same applies for
Case 8.2, with the exception that here the degree-4 overlap
is chosen from t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ} overlaps,
which reduces the number of added terms to the two in (39).
Following the same logic gives (40). This distinction is not
needed for Case 8.4. �

Theorem 8. The total number of instances of Pattern P8 in the
binary protograph of an SC code that has parameters γ ≥ 4,
κ, m = 1, L ≥ 3, and O, is:

FP8
=

3∑
k=1

(L− k + 1)F kP8,1, (42)

where F kP8,1
, k ∈ {1, 2, 3}, are given by:

F 1
P8,1 =

1

2

∑
{i1,i2}⊂{0,...,2γ−1},{i3,i4}⊂{0,...,2γ−1}

AP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

)
,

F 2
P8,1 =

1

2

∑
{i1,i2}⊂{γ,...,2γ−1},{i3,i4}⊂{γ,...,2γ−1}

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

, t{i1−γ,i2−γ,i3−γ,i4−γ}
)

+
1

2

∑
{i1,i2}⊂{0,...,γ−1},{i3,i4}⊂{0,...,γ−1}

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

, t{i1+γ,i2+γ,i3+γ,i4+γ}
)

+
∑

{i1,i2}⊂{0,...,2γ−1},{i3,i4}⊂{γ,...,2γ−1}

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3−γ,i4−γ}

)
+
∑

{i1,i2}⊂{0,...,2γ−1},{i3,i4}⊂{0,...,γ−1}

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3+γ,i4+γ}

)
F 3
P8,1 =

∑
{i1,i2}⊂{γ,...,2γ−1},{i3,i4}⊂{2γ,...,3γ−1}

DP8

(
t{i1,i2}, t{i3−2γ,i4−2γ}

, t{i1−γ,i2−γ,i3−γ,i4−γ}
)
, (43)

with i1 6= i2, i1 6= i3, i1 6= i4, i2 6= i3, i2 6= i4, and i3 6= i4.

Proof. To compute FP8
, we use the formula in [14, Theorem

1], with χ = 3. Then, F 1
P8,1

is the sum of function AP8 over
all possible values of {i1, i2} and {i3, i4}. In Pattern P8, CNs
c1 and c2 are directly connected twice, and CNs c3 and c4 are
directly connected twice, which creates two separate groups
of CNs. Consequently, the set {i1, i2} has to be separated
from the set {i3, i4}, despite having the same range, in the
expression of F 1

P8,1
. Regarding F 2

P8,1
, we need to account for

Case 8.2 and Case 8.3. For both cases, we need to distinguish
between two situations; when r < e and when r > e, which
results in two summations for each case. Since it does not
matter for the counts of AP8

and BP8
whether the set {i1, i2}

or the set {i3, i4} is chosen first, we multiply by 1
2 in (43)

to account for repetitions (it does matter for the count of CP8

because the degree-2 overlaps, c1− c2 and c3− c4, are in two
different replicas). Regarding F 3

P8,1
, the only situation under

which P8 spans 3 consecutive replicas in the case of m = 1 is
what is described in Case 8.4, with the addition that the degree-
4 overlap has to be in the middle replica (i.e., r < s < e).
This situation is accounted for in the last line of (43). �

I. Analysis of Pattern P9 (size 4× 4)

This pattern has four VNs, and the adjacent pairs are v1−v2,
v2−v3, v3−v4, and v1−v4 (not all pairs) according to P9 in
Fig. 2. Thus, P9 also spans at most 2m + 1 = 3 consecutive
replicas. Suppose P9 has the CNs c1, c2, c3, and c4. The
pattern is formed of four distinct degree-2 overlaps. Define
the CNs such that the adjacent pairs (connected via at least
one path of only one VN) are c1 − c2, c2 − c3, c3 − c4, and
c1− c4. This definition already implies what the overlaps are.

Lemma 11. Case 9.1: The number of instances of P9 with
CNs c1, c2, c3, and c4 as defined in the previous paragraph,
and all overlaps in one replica, Rr, is:



AP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i4}, t{i1,i2,i3}, t{i1,i2,i4}

, t{i1,i3,i4}, t{i2,i3,i4}, t{i1,i2,i3,i4}
)

= AP9,1 +AP9,2 +AP9,3 +AP9,4, (44)

AP9,1 = t{i1,i2,i3,i4}
(
t{i1,i2,i3,i4} − 1

)+
·
(
t{i1,i3,i4} − 2

)+ (
t{i1,i4} − 3

)+
+ t{i1,i2,i3,i4}

(
t{i1,i2,i3,i4} − 1

)+
·
(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 2

)+
+ t{i1,i2,i3,i4}

(
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
·
(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+
+ t{i1,i2,i3,i4}

(
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 1

)+
+ t{i1,i2,i3,i4}

(
t{i2,i3} − t{i2,i3,i4}

)
·
(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+
+ t{i1,i2,i3,i4}

(
t{i2,i3} − t{i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+
,

AP9,2 =
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

·
(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+
+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

·
(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+
+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
· t{i1,i3,i4}

(
t{i1,i4} − 1

)+
+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4} − 1

)+
t{i1,i4}

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4} − 1

)+
· t{i1,i3,i4}

(
t{i1,i4} − 1

)+
+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4} − 1

)+
·
(
t{i3,i4} − t{i1,i3,i4}

)
t{i1,i4},

AP9,3 =
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

·
(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 3

)+
+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

·
(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 2

)+
+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
· t{i1,i3,i4}

(
t{i1,i4} − 2

)+
+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 1

)+
+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4}

)
· t{i1,i3,i4}

(
t{i1,i4} − 2

)+
+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+
,

AP9,4 =
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
· t{i1,i2,i3,i4}

(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+
+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
· t{i1,i2,i3,i4}

(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
·
(
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
t{i1,i3,i4}

(
t{i1,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
·
(
t{i2,i3,i4} − t{i1,i2,i3,i4}

) (
t{i3,i4} − t{i1,i3,i4} − 1

)+
t{i1,i4}

+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
·
(
t{i2,i3} − t{i2,i3,i4}

)
t{i1,i3,i4}

(
t{i1,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
·
(
t{i2,i3} − t{i2,i3,i4}

) (
t{i3,i4} − t{i1,i3,i4}

)
t{i1,i4}. (45)

Case 9.2: The number of instances of P9 with CNs c1, c2, c3,
and c4 as defined in the previous paragraph, and all overlaps
in two replicas, s.t. three overlaps are in Rr, and the c1 − c4
overlap is in Re, is:

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}

, t{i1,i2,i3,i4}, t{i1+θr,eγ,i4+θr,eγ}
)

=
[
t{i1,i2,i3,i4}

(
t{i2,i3,i4} − 1

)+ (
t{i3,i4} − 2

)+
+ t{i1,i2,i3,i4}

(
t{i2,i3} − t{i2,i3,i4}

) (
t{i3,i4} − 1

)+
+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

)
t{i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4} − 1

)+
t{i3,i4}

+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

) (
t{i2,i3} − t{i2,i3,i4}

)
t{i3,i4}

]
· t{i1+θr,eγ,i4+θr,eγ}. (46)

Case 9.3: The number of instances of P9 with CNs c1, c2, c3,
and c4 as defined in the previous paragraph, and all overlaps
in two replicas, s.t. c1 − c2 and c2 − c3 overlaps are in Rr,
and c3 − c4 and c1 − c4 overlaps are in Re, r < e, is:

CP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+θr,eγ,i4+θr,eγ}

, t{i1+θr,eγ,i4+θr,eγ}, t{i1+θr,eγ,i3+θr,eγ,i4+θr,eγ}
)

=
[
t{i1,i2,i3}

(
t{i2,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i2,i3}

]
·
[
t{i1+θr,eγ,i3+θr,eγ,i4+θr,eγ}

(
t{i1+θr,eγ,i4+θr,eγ} − 1

)+
+
(
t{i3+θr,eγ,i4+θr,eγ} − t{i1+θr,eγ,i3+θr,eγ,i4+θr,eγ}

)
· t{i1+θr,eγ,i4+θr,eγ}

]
. (47)

Case 9.4: The number of instances of P9 with CNs c1, c2, c3,
and c4 as defined in the previous paragraph, and all overlaps
in two replicas, s.t. c1 − c2 and c3 − c4 overlaps are in Rr,
and c2 − c3 and c1 − c4 overlaps are in Re, r < e, is:



DP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+θr,eγ,i3+θr,eγ}

, t{i1+θr,eγ,i4+θr,eγ}, t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}
)

=
[
t{i1,i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i3,i4}

]
·
[
t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}

(
t{i1+θr,eγ,i4+θr,eγ} − 1

)+
+
(
t{i2+θr,eγ,i3+θr,eγ} − t{i1+θr,eγ,i2+θr,eγ,i3+θr,eγ,i4+θr,eγ}

)
· t{i1+θr,eγ,i4+θr,eγ}

]
. (48)

Case 9.5: The number of instances of P9 with CNs c1, c2, c3,
and c4 as defined previously, and all overlaps in three replicas,
s.t. c1−c2 and c3−c4 overlaps are in Rr, the c2−c3 overlap
is in Re, and the c1 − c4 overlap is in Rs, e < s, is:

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

, t{i2+θr,eγ,i3+θr,eγ}, t{i1+θr,sγ,i4+θr,sγ}
)

=
[
t{i1,i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i3,i4}

]
· t{i2+θr,eγ,i3+θr,eγ}t{i1+θr,sγ,i4+θr,sγ}. (49)

Proof. In Case 9.1, the number we are after is the number
of ways to choose 1 overlap from each family (there exist
four different families for P9). In order to avoid over-counting,
multiple distinctions need to be performed. For the degree-2
overlap c1 − c2, it is required to distinguish between the four
situations when that overlap is part of a c1 − c2 − c3 − c4
degree-4 overlap, when that overlap is part of a c1 − c2 − c3
degree-3 overlap that is not itself part of a c1 − c2 − c3 − c4
degree-4 overlap, when that overlap is part of a c1 − c2 − c4
degree-3 overlap that is not itself part of a c1 − c2 − c3 − c4
degree-4 overlap, and when neither of these previous three
situations holds. This particular distinction results in having
four functions, AP9,1, AP9,2, AP9,3, and AP9,4. Next, only
the degree-2 overlaps c2− c3, c3− c4, and c1− c4 need to be
chosen. Consequently, for for the degree-2 overlap c2 − c3, it
is required to distinguish between only three situations; when
that overlap is part of a c1 − c2 − c3 − c4 degree-4 overlap,
when that overlap is part of a c2 − c3 − c4 degree-3 overlap
that is not itself part of a c1 − c2 − c3 − c4 degree-4 overlap,
and when neither of these previous two situations holds. A
logically similar distinction needs to be performed for the next
degree-2 overlap, c3 − c4 (only two situations to distinguish
between). Addressing all these distinctions results in (44). The
same applies for Case 9.2, with the exception that here the
degree-2 overlap c1 − c4 is chosen from t{i1+θr,eγ,i4+θr,eγ}
overlaps, which divides the number of added terms in (45) by
four to reach (46). Following the same logic used in Case 7.4
gives (47) and (48). Case 9.5 is similar to Case 8.2, with the
exception that here there are two degree-2 overlaps outside
Rr, and they are distributed over Re (for the c2− c3 overlap)
and Rs (for the c1 − c4 overlap). �

Theorem 9. The total number of instances of Pattern P9 in the
binary protograph of an SC code that has parameters γ ≥ 3,
κ, m = 1, L ≥ 3, and O, is:

FP9
=

3∑
k=1

(L− k + 1)F kP9,1, (50)

where F kP9,1
, k ∈ {1, 2, 3}, are given by:

F 1
P9,1 =

1

4

∑
i1∈{0,...,2γ−1},{i2,i4}⊂{0,...,2γ−1},i3∈{0,...,2γ−1}

AP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i4}, t{i1,i2,i3}

, t{i1,i2,i4}, t{i1,i3,i4}, t{i2,i3,i4}, t{i1,i2,i3,i4}
)
,

F 2
P9,1 =

∑
{i1,i4}⊂{γ,...,2γ−1},i2∈{0,...,2γ−1},i3∈{0,...,2γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}

, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1−γ,i4−γ}
)

+
∑

{i1,i4}⊂{0,...,γ−1},i2∈{0,...,2γ−1},i3∈{0,...,2γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}

, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1+γ,i4+γ}
)

+
∑

{i1,i3}⊂{γ,...,2γ−1},i2∈{0,...,2γ−1},i4∈{γ,...,3γ−1}

CP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3−γ,i4−γ}

, t{i1−γ,i4−γ}, t{i1−γ,i3−γ,i4−γ}
)

+
1

2

∑
{i1,i4}⊂{γ,...,2γ−1},i2∈{γ,...,2γ−1},i3∈{γ,...,2γ−1}

DP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2−γ,i3−γ}

, t{i1−γ,i4−γ}, t{i1−γ,i2−γ,i3−γ,i4−γ}
)
,

F 3
P9,1 =

∑
{i1,i4}⊂{γ,...,2γ−1},i2∈{0,...,γ−1},i3∈{0,...,γ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

, t{i2+γ,i3+γ}, t{i1−γ,i4−γ}
)
, (51)

with i1 6= i2, i1 6= i3, i1 6= i4, i2 6= i3, i2 6= i4, and i3 6= i4.

Proof. To compute FP9
, we use the formula in [14, Theorem

1], with χ = 3. Then, F 1
P9,1

is the sum of function AP9 over
all possible values of i1, {i2, i4}, and i3,. In a group of four
CNs, there exists 3 unique ways to construct P9 (which is a
cycle of length 8) among them. Since the above separation
gives 12 options, we multiply by 1

4 in the expression of F 1
P9,1

to account for repetitions (similar logic applies for DP9
in

F 2
P9,1

). Regarding F 2
P9,1

, we need to account for Case 9.2,
Case 9.3, and Case 9.4. For Case 9.2, we need to distinguish
between two situations; when r < e and when r > e, which
is not needed for Cases 9.3 and 9.4 since the two replicas
in them have the same number and connectivity of degree-2
overlaps. Regarding F 3

P9,1
, the only situation under which P9

spans 3 consecutive replicas in the case of m = 1 is what is
described in Case 9.5, with the addition that the the replica
with two degree-2 overlaps has to be the middle replica (i.e.,
s < r < e). This situation is accounted for in the last line of
(51). Note that c1 and c3 are not adjacent in P9, and the same
applies for c2 and c4. Thus, it is possible to have i1 = i3 and
i2 = i4, but not i1 = i3 nor i2 = i4, for that pattern. �

After deriving the expressions of FP` , ∀`, as functions of the
overlap parameters in O, we use (3), (4), and [14, Lemma 3]
to express Ftot as a function of the parameters in Oind (which



is the set of independent, non-zero overlap parameters). Thus,
our discrete optimization problem is:

F ∗tot = min
Oind

Ftot. (52)

The constraints of the optimization problem in (52) are lin-
ear constraints capturing interval constraints in addition to the
balanced partitioning constraint [15]. These are the constraints
under which the partitioning becomes valid. Similar to the
set Oind, the optimization constraints depend only on code
parameters, and not on the common substructure of interest
(which depends on the channel). For the case of γ = 3, m = 1,
and any κ,Oind = {t0, t1, t2, t{0,1}, t{0,2}, t{1,2}, t{0,1,2}}, and
the optimization constraints are (see also [14] and [15]):

0 ≤ t0 ≤ κ, 0 ≤ t{0,1} ≤ t0, t{0,1} ≤ t1 ≤ κ− t0 + t{0,1},

0 ≤ t{0,1,2} ≤ t{0,1}, t{0,1,2} ≤ t{0,2} ≤ t0 − t{0,1} + t{0,1,2},

t{0,1,2} ≤ t{1,2} ≤ t1 − t{0,1} + t{0,1,2},

t{0,2} + t{1,2} − t{0,1,2} ≤ t2
≤ κ− t0 − t1 + t{0,1} + t{0,2} + t{1,2} − t{0,1,2},

and b3κ/2c ≤ t0 + t1 + t2 ≤ d3κ/2e . (53)

The solution of this optimization problem is not unique.
However, since all the solutions have the same performance
(e.g., they all achieve F ∗tot, see also [15]), we work with one
of these solutions, and call it an optimal vector, t∗.

V. CPO: CUSTOMIZATION FOR PR SYSTEMS

Using the optimal vector t∗, computed as described in the
previous section, Hp is partitioned and the protograph matrix
of the SC code, Hp

SC, is constructed. The next step is pre-
venting as many objects in the protograph as possible from
being reflected in the unlabeled graph of the SC code, via
optimizing the circulant powers using the CPO. Here, the CPO
is customized for the (4, 4(γ−2)) object, which is the common
substructure for detrimental configurations in the case of PR
systems (see also Fig. 1).

From the previous analysis, a Pattern P` spans at most either
m+1 = 2 or 2m+1 = 3 consecutive replicas, depending on
the value of `. Thus, in the CPO, it suffices to operate on the
PM Π3,p

1 , which is the non-zero part of the first 3 replicas in
Hp

SC, and has the size 4γ × 3κ. Circulant powers associated
with the 1’s in Hp are defined as fi,j , where 0 ≤ i ≤ γ−1 and
0 ≤ j ≤ κ−1. Let the circulant powers associated with the 1’s
in Π3,p

1 be f ′i′,j′ , where 0 ≤ i′ ≤ 4γ−1 and 0 ≤ j′ ≤ 3κ−1.
From the repetitive nature of the PM Π3,p

1 , f ′i′,j′ = fi′,j̃′ ,
where i′ = (i′ mod γ) and j̃′ = (j′ mod κ). Define our cycle-
8 candidate in the graph of Π3,p

1 as c1 − v1 − c2 − v2 − c3 −
v3− c4− v4, which is a particular way of traversing a pattern
and not necessarily a protograph cycle (see also Figures 1 and
2). This candidate results in z (or z/2 in the case of P1 only)
cycles of length 8 after lifting if and only if [16]:

f ′c1,v1+f
′
c2,v2 + f ′c3,v3 + f ′c4,v4 ≡
f ′c1,v2 + f ′c2,v3 + f ′c3,v4 + f ′c4,v1 (mod z). (54)

The goal is to prevent as many cycle-8 candidates in the
graph of Hp

SC as possible from being converted into z (or z/2
in the case of P1) (4, 4(γ − 2)) UASs/UTSs in the graph of
HSC, which is the unlabeled graph of the SC code. In other
words, a cycle-8 candidate in the graph of Hp

SC is allowed
to be converted into multiple (4, 4(γ − 2) − 2δ) UASs/UTSs
with δ ∈ {1, 2}, as long as they are not (4, 0) UASs, in the
unlabeled graph since these are not instances of the common
substructure of interest. These (4, 4(γ−2)−2δ) UASs/UTSs,
δ ∈ {1, 2}, are cycles of length 8 with internal connections,
which means v1 and v3 are adjacent or/and v2 and v4 are
adjacent (see Fig. 1). For the cycle-8 candidate in the graph
of Π3,p

1 that is described in the previous paragraph and has a
CN, say c5, connecting v1 and v3, in order to have this internal
connection in the lifted cycles, the following condition for a
cycle of length 6 must be satisfied in addition to (54):

f ′c1,v1+f
′
c2,v2+f

′
c5,v3 ≡ f

′
c1,v2+f

′
c2,v3+f

′
c5,v1 (mod z). (55)

Similarly, for that cycle-8 candidate in the graph of Π3,p
1 that

has a CN, say c6, connecting v2 and v4, in order to have this
internal connection in the lifted cycles, the following condition
for a cycle of length 6 must be satisfied in addition to (54):

f ′c1,v1+f
′
c6,v2+f

′
c4,v4 ≡ f

′
c1,v2+f

′
c6,v4+f

′
c4,v1 (mod z). (56)

Note that the two CNs, c5 and c6, have to be different from
the CNs of the pattern itself in order that we consider them in
the CPO algorithm as internal connections. The reason is that
the final unlabeled graphs of our codes must have no cycles
of length 4 (which is also why (54) is applied for P1 since
f ′c1,v1 + f ′c2,v2 ≡ f ′c1,v2 + f ′c2,v1 (mod z) is not allowed for
any protograph cycle of length 4, c1 − v1 − c2 − v2).

The following lemma discusses the internal connections for
different patterns in the protograph.

Lemma 12. Let ηP` be the maximum number of internal con-
nections Pattern P` can have (multiple internal connections
between the same two VNs are only counted once). Then,

ηP` =

0, ` ∈ {1, 3, 5},
1, ` ∈ {2, 6, 8},
2, ` ∈ {4, 7, 9}.

(57)

Proof. A protograph pattern, P`, with only two variable nodes
cannot have any internal connections (` ∈ {1, 3, 5}). A proto-
graph pattern with three variable nodes can have at most one
internal connection (` ∈ {2, 6, 8}). A protograph pattern with
four variable nodes can have up to two internal connection
(` ∈ {4, 7, 9}), which completes the proof. �

The case of multiple internal connections between the same
two VNs is addressed in the CPO algorithm.

The steps of the customized CPO algorithm for SC codes
that have parameters γ ≥ 3, κ, m = 1, and L ≥ 3, are:

1) Assign initial circulant powers to all the γκ 1’s in Hp.
In this work, our initial powers are as in SCB codes. In
particular, fi,j = (i2)(2j), 0 ≤ i ≤ γ − 1 and 0 ≤ j ≤
κ− 1 (initially no cycles of length 4 in HSC).



2) Construct Π3,p
1 , via Hp and t∗. Circulant powers of the

1’s in Π3,p
1 , f ′i′,j′ , are obtained from the 1’s in Hp.

3) Define a counting variable ψi,j , 0 ≤ i ≤ γ − 1 and
0 ≤ j ≤ κ−1, for each of the 1’s in Hp. Define another
counting variable ψ′i′,j′ , 0 ≤ i′ ≤ 4γ − 1 and 0 ≤ j′ ≤
3κ − 1, for each of the elements in Π3,p

1 . Initialize all
the variables in this step with zeros. Only 3γκ counting
variables of the form ψ′i′,j′ are associated with 1’s in
Π3,p

1 . The other variables remain zeros.
4) Locate all instances of the nine patterns in Π3,p

1 . Note
that locating P1 means also locating all cycles of length
4 in Π3,p

1 , which is needed.
5) Determine the ζP` ways to traverse each instance of P`,
∀`, to reach a (4, 4(γ − 2)) UAS/UTS in the unlabeled
graph, which are the cycle-8 candidates.

6) Specify all internal connections (CNs) in each candidate
determined in Step 5 if they can exist.

7) For each cycle-8 candidate in Π3,p
1 , check whether (54)

is satisfied for its circulant powers or not.
8) If (54) is satisfied, and the candidate has no internal

connections, or (54) is satisfied and the candidate has in-
ternal connection(s) but neither (55) nor (56) is satisfied
for any internal connection, mark this cycle-8 candidate
as an active candidate.

9) Let F k,aP`,1
, where k ∈ {1, 2, 3}, be the number of active

candidates of P` starting at the first replica and spanning
k consecutive replicas in Π3,p

1 . Thus, the number of
active candidates of P` spanning k consecutive replicas
in Π3,p

1 is (4−k)F k,aP`,1
. (For example, for k = 1, 3F 1,a

P`,1

is the number of active candidates of P`, for any value
of `, spanning one replica in Π3,p

1 .)
10) Compute the number of (4, 4(γ − 2)) UASs/UTSs in

HSC using the following formula (see also [14]):

FSC =

9∑
`=1

3∑
k=1

(
(L− k + 1)F k,aP`,1

)
zP` , (58)

where zP` = z/2 if ` = 1, and zP` = z otherwise.
11) Count the number of active candidates each 1 in Π3,p

1 is
involved in. Assign weight wk = (L−k+1)/(4−k) to
the number of active candidates spanning k consecutive
replicas in Π3,p

1 (see also [14]). Multiply wk by 1/2
if the candidate is associated to P1. (For example, for
k = 3, the weight of the number of active candidates
spanning 3 consecutive replicas is (L− 2).)

12) Store the weighted count associated with each 1 in Π3,p
1 ,

which is indexed by (i′, j′), in ψ′i′,j′ .
13) Calculate the counting variables ψi,j , ∀i, j, associated

with the 1’s in Hp from the counting variables ψ′i′,j′
associated with the 1’s in Π3,p

1 (computed in Steps 11
and 12) using the following formula:

ψi,j =
∑
i′:i′=i

∑
j′:j̃′=j

Π3,p
1 [i′][j′] 6=0

ψ′i′,j′ , (59)

14) Sort these γκ 1’s of Hp in a list descendingly according
to the counts in ψi,j , ∀i, j.

15) Pick a subset of 1’s from the top of this list, and change
the circulant powers associated with them.

16) Using these interim powers, do Steps 7, 8, 9, and 10.
17) If FSC is reduced while maintaining no cycles of length

4 and no (4, 0) objects (in the case of γ = 3) in HSC,
update FSC and the circulant powers, then go to Step 11.

18) Otherwise, return to Step 15 to pick a different set of
circulant powers or/and a different subset of 1’s (from
the 1’s in Hp).

19) Iterate until the target FSC (set by the code designer) is
achieved, or the reduction in FSC approaches zero.

Step 15 in the CPO algorithm is performed heuristically.

Example 1. Suppose we are designing an SC code with γ = 3,
κ = 7, z = 13, m = 1, and L = 10 using the OO-CPO
approach for PR systems. Solving the optimization problem in
(52) gives an optimal vector t∗ = [t0 t1 t2 t{0,1} t{0,2} t{1,2}
t{0,1,2}]

T = [3 3 4 0 1 2 0]T, with F ∗tot = 5170 patterns
(rounded weighted sum) in the graph of Hp

SC. Fig. 3(a) shows
how the partitioning is applied on Hp (or H). Next, applying
the CPO results in 2613 (4, 4) UASs in the graph of HSC.
Fig. 3(b) shows the final circulant power arrangement for all
circulants in H.
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Fig. 3. (a) The OO partitioning of Hp (or H) of the SC code in Example 1.
Entries with circles (resp., squares) are assigned to H

p
0 (resp., Hp

1). (b) The
circulant power arrangement for the circulants in H.

Remark 3. After introducing the concept of patterns in this
work, the OO-CPO approach can be easily extended to target
other common substructures if needed.

VI. EXPERIMENTAL RESULTS

In this section, we propose experimental results demonstrat-
ing the effectiveness of the OO-CPO approach compared to
other code design techniques in PR (1-D MR) systems.

Remark 4. In this section, all the codes used have no cycles
of length 4. Moreover, we opted to work with circulant sizes
z > κ in order to give more freedom to the CPO, which results
in less detrimental objects.

First, we compare the total number of instances of the
common substructure of interest in the unlabeled graphs of
SC codes designed using various techniques. All the codes in
this comparison have γ = 3 (i.e., the common substructure of
interest is the (4, 4) UAS in Fig. 1) and m = 1. In addition
to the uncoupled setting (H0 = H and H1 = 0), we show
results for the following three SC code design techniques:

1) The CV technique (see [10]).
2) The OO technique with no CPO applied.
3) The OO technique with circulant powers optimized via

the CPO (the OO-CPO approach).



In the uncoupled setting and the first two techniques, circulant
powers as in SCB codes, fi,j = f(i)f(j) = (i2)(2j), are used.

TABLE I
NUMBER OF (4, 4) UASS IN SC CODES WITH γ = 3 AND m = 1

DESIGNED USING DIFFERENT TECHNIQUES.

Design technique

Number of (4, 4) UASs
κ = 7,
z = 13,
L = 10

κ = 11,
z = 23,
L = 10

κ = 17,
z = 37,
L = 10

κ = 19,
z = 46,
L = 5

Uncoupled with SCB 32370 254610 1700890 2425120
SC CV with SCB 9464 91333 652347 845434
SC OO with SCB 6500 53130 440818 579968

SC OO-CPO 2613 32361 254005 184667

The results for different choices of κ, z, and L are listed in
Table I. For a particular choice of κ, z, and L codes designed
using these different techniques all have block length = κzL

and rate ≈
[
1− 3(L+1)

κL

]
. Table I demonstrates the significant

gains achieved by the OO-CPO approach compared to other
techniques. In particular, the proposed OO-CPO approach
achieves a reduction in the number of (4, 4) UASs that ranges
between 85% and 92% compared to the uncoupled setting,
and between 61% and 78% compared to the CV technique.
Moreover, the importance of the two stages (the OO and the
CPO) is highlighted by the numbers in the table.

Second, we present simulation results of SC codes designed
using various techniques over the PR channel. We use the
PR channel described in [5]. This channel incorporates inter-
symbol interference (intrinsic memory), jitter, and electronic
noise. The normalized channel density [17], [18] we use is
1.4, and the PR equalization target is [8 14 2]. The receiver
consists of filtering units followed by a Bahl Cocke Jelinek
Raviv (BCJR) detector, which is based on pattern-dependent
noise prediction (PDNP), in addition to a fast Fourier trans-
form based q-ary sum-product algorithm (FFT-QSPA) LDPC
decoder [19]. The number of global (detector) iterations is
10, and the number of local (decoder) iterations is 20. Unless
a codeword is reached, the decoder performs its prescribed
number of local iterations for each global iteration. More
details about this PR system can be found in [5].

In the simulations, we use five different codes. All the codes
are defined over GF(4). Codes 1, 2, 3, and 4 have γ = 3, κ =
19, z = 46, m = 1, and L = 5. Thus, these codes have block
length = 8740 bits and rate ≈ 0.81. Code 1 is uncoupled.
Code 2 is an SC code designed using the CV technique for
PR channels [10]. Codes 1 and 2 have SCB circulant powers
of the form fi,j = (i2)(2j). Code 3 is an SC code designed
using the OO-CPO approach. Codes 1, 2, and 3 do not have
optimized edge weights. Code 4 is the result of applying the
WCM framework to Code 3 in order to optimize its edge
weights. The number of (4, 4) UASs in the unlabeled graphs
of Codes 1, 2, and 3 are given in the last column of Table I.
Code 5 is a block (BL) code, which is also protograph-based
(PB), designed as in [6] and [7]. Code 5 has column weight
= 3, circulant size = 46, block length = 8832 bits, rate ≈
0.81 (similar to all the other codes), and unoptimized weights
(similar to all codes except Code 4). Note that because our
main focus in this work is the performance, a relatively small

value of L (which is 5) along with block decoding are used
for SC Codes 1, 2, 3, and 4.
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 Code 3: SC OO-CPO
 Code 4: SC OO-CPO-WCM

Fig. 4. Simulation results over the PR Flash channel for SC codes designed
using different techniques and a BL code.

Fig. 4 demonstrates the effectiveness of the proposed OO-
CPO approach in designing high performance SC codes for
PR channels. In particular, Code 3 (designed using the OO-
CPO approach) outperforms Code 2 (designed using the CV
technique) by about 3 orders of magnitude at SNR = 15 dB,
and by about 1.1 dB at FER ≈ 10−5. More intriguingly,
Code 3 outperforms Code 5 (the block code) by about 1.6
orders of magnitude at SNR = 15 dB, and by almost 0.4 dB
at FER ≈ 10−6. The performance of Code 3 is better than the
performance Code 5 not only in the error floor region, but also
in the waterfall region. An interesting observation is that, in
the error profile of Code 3, we found no codewords of weights
∈ {6, 8} (which are (6, 0, 0, 9, 0) and (8, 0, 0, 12, 0) BASTs)
despite the dominant presence of such low weight codewords
in the error profiles of Codes 1, 2, and 5 (see also [5] and
[7]). From Fig. 4, the WCM framework achieves 1 order of
magnitude additional gain.

VII. CONCLUSION

We proposed the OO-CPO approach to optimally design
binary and non-binary SC codes for PR channels, via mini-
mizing the number of detrimental objects in the graph of the
code. SC codes designed using the OO-CPO approach were
shown to significantly outperform SC codes designed using
techniques from the literature. More importantly, SC codes
designed using our approach were demonstrated to outperform
structured block codes with the same parameters.
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