
On the Locality in Codes for DNA Storage
Siyi Yang1, Student Member, IEEE, Clayton Schoeny1, Student Member, IEEE,

Laura Conde-Canencia2, and Lara Dolecek1, Senior Member, IEEE
1 Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095 USA

2 Lab-STICC, CNRS UMR 6285, Université de Bretagne Sud, Lorient, France

Abstract—Recently, error-correcting codes for DNA storage
have been intensely studied. In DNA storage, information
is stored as a prescribed number of pairwise distinct DNA
molecules, each of length L. Lenz et al. showed that codes that
correct up to s losses of DNA strands and t edited strands have a
redundancy of at least (s+t)L symbols. Based on the framework
of Lenz et al., we first present an explicit construction of codes
with redundancy O((s+2t)L) symbols. Locality is important for
a rewritable random-access DNA storage system that tolerates
frequent updates and moderate edits. By locality, we refer to
the capability of a code to decode the original message without
requiring the entire set of coded DNA strands. With this goal in
mind, we then extend our previous code into a locally recoverable
construction. Next, we focus on linear block codes that offer
good trade-off between local distance and global distance. In this
context, local distance refers to the minimum Hamming distance
of each block and global distance refers to that of a prescribed
number of consecutive blocks. Lastly, for a given local minimum
distance and redundancy, we prove the existence of codes that
reach the upper bound on the global minimum distance.

I. INTRODUCTION

DNA storage systems have garnered substantial research
interest recently because of their potential to store large
amounts of data. It has been shown by Zhirnov et al. that
increasing demand will exceed the available supply of silicon-
based memories in the future, which motivates the exploration
for new storage mediums [1].

There are two major operations in DNA storage systems:
DNA synthesis and DNA sequencing, which correspond to
writing and reading, respectively. Through DNA synthesis,
binary files are encoded and stored as short strands of nu-
cleotides. This information can be accessed through DNA
sequencing, where multiple duplications of the nucleotides
are generated through the polymerase chain reaction (PCR)
technique. The original data can then be decoded by the
obtained set of replicas. Recent progress on DNA synthesis
and sequencing has bridged the gap between theory and
practical implementations. As a consequence, research groups
from Microsoft Research, Harvard University, and Washington
University have reported successful implementation of DNA
storage systems [2]–[5].

Although DNA storage systems are expected to have long-
term stability, research on DNA synthesis and sequencing
indicates that stored data suffers from various types of errors
[4], [5]; information is lost from unsuccessful synthesis and
hydrolytic damage in storage [6]. Synthesizing and sequencing
DNA may also lead to insertions, deletions and substitutions
of nucleotides. These error patterns motivate us to develop

Digital Data- ENC - Synthesis DNA Strands

?

Reconstructed
Data

� DEC � Sequencing�Edited Strands

DNA Channel

C
C
C
C

�
�
�
�

Storage

Fig. 1. DNA Storage System

novel coding schemes that can appropriately correct the errors
in DNA storage systems.

Error-correcting codes in DNA storage systems have been
intensely studied during recent years. Gabrys et al. studied
codes for DNA storage systems in the asymmetric Lee distance
and the Damerau distance [7], [8]. More recently, Lenz et
al. introduced the concept of coding over sets and proposed
constructions that are close to the optimal rate [9].

A major differentiator between DNA storage and conven-
tional storage is that DNA strands are stored without the
ordering information. The scheme in [9] innovatively interprets
sets of strands as codewords, resulting in a rate close to
optimal. However, this scheme requires decoding the whole
file, even if only a small specific section needs to be read.
Moreover, the scheme is not distance preserving, namely,
rewriting even a few bits requires editing the vast majority of
stored nucleotides. These properties prevent DNA storage from
being used in frequently updating systems that require moder-
ate editing. Yazdi et al. and Organick et al. studied rewritable,
random-access DNA storage systems [3], [10], where a set
of mutually uncorrelated strings (also called primers) were
attached to different information blocks to enable access of
information at arbitrary positions. Later on, Levy and Yaakobi
proposed efficient algorithms for constructing mutually uncor-
related codes that can be appropriately used as primers [11].
Jain et al., and Chee et al. studied coding schemes that correct
tandem repeats, which addressed the errors that occur in PCR
amplification resulting from the secondary structure in primers
[12], [13].

In this paper, we first introduce the system model in Sec-
tion II. Next, in Section III, we propose an explicit construction
of codes for DNA storage that have a redundancy that scales
linearly to the optimal redundancy, based on the study of Lenz

DNA Channel-

ATCGTAGGCATCG
ACGTGCTACGTGT
CTGGATGCATGCT
TGACTGCACTCCA
GTGACGCTAGCAT
TAGCATCGATGCT
ACGTGATGCATCA
CATGCTGTCAACG

ATCCTAGGCATCG
ACGTGCTACGTGT
CTGGTTGTCAAGCT
TGACTGCACTCCA
GTGACGCTAGCAT
TACATCGATGCT
CATGCTGTCAACG

Fig. 2. DNA Channel: DNA suffers from errors including substitutions,
insertions and deletions, as well as sequence losses, which are marked as
red, orange, blue, and olive, respectively.

et al. [9]. This construction has an order-optimal rate, but no
favorable locality properties. We then extend this construction
into one that is locally recoverable. In Section IV, we study
constructions of locally recoverable linear block codes defined
on a finite field GF (q). We prove the existence of linear block
codes that offer a good trade-off between the local Hamming
distance and the global Hamming distance, for sufficiently
large field size q. Finally, we summarize and discuss future
extensions. The log base is always 2 throughout this paper.

II. SYSTEM MODEL

A. DNA Storage System

DNA storage systems involve two stages: reading and
writing. In the writing stage, binary data is encoded into a
set of short strings that consist of approximately 150 ∼ 250
nucleobases chosen from {A, T,C,G}. As shown in Fig.
1, the de novo DNA systhesis technique is then applied to
synthesize the artificially designed strands into real nucleotides
[14]. In the reading stage, the nucleotides are sampled and
read by a DNA sequencing technique. Next Generation Se-
quencing (NGS), including Illumina sequencing and Nanopore
sequencing techniques, allows for massive parallel sequencing
of nucleotides at a high throughput and a low error probability.
The original information is then decoded from the content of
the sequenced nucleotides. Throughout this paper, we focus
on DNA storage based on Illumina sequencing [6].

In Fig. 1, we present a block diagram of the DNA channel,
highlighting the synthesis, storage and sequencing steps. Fig.
2 shows the input, output and the error model of the DNA
channel. Current synthesis techniques generate multiple du-
plications of the targeted strands, implying that information
stored in identical strands cannot be distinguished during the
reading steps [15]. Additionally, during storage, DNA strands
undergo breaking and bridge amplification due to depurina-
tion in storage caused by hydrolytic damage. These DNA
molecules cannot be read by Illumina sequencing, resulting
in a significant loss of DNA strands at the output of the
DNA channel [6]. Moreover, NGS sequencers also introduce
substitutions, insertions and deletions within nucleotides [14],
[16].

B. Characterization of the DNA Channel

According to the DNA channel described in [6], [9], the
input and output of a DNA channel can be modeled as follows.

Let XLM be the set of all subsets consisting of M strings
of L symbols from an alphabet of size 4. In DNA storage,

particularly, the alphabet is {A, T,C,G}L. Then the input,
i.e., any set S consisting of M strands of length L, must
be an element of XLM . Note that identical strands cannot be
distinguished by DNA sequencing since the strands are stored
without ordering information and similar strands are clustered
together as edited replicas of a single strand.

The output of the DNA channel is a set S′ obtained from
S through a loss of at most s strands and edits in at most t
strands. In Fig. 2, for example, M = 8, L = 13, s = 1, and
t = 3.

III. CONSTRUCTIONS

For the remainder of the paper, we use the DNA channel
model introduced in Section II-B. Lenz et al. analyzed the
optimal rate of codes that correct entire losses of DNA strands
as well as edits within DNA strands. They show how constant
weight codes that correct asymmetric errors can be used as
constituent codes in a coding scheme for the DNA channel.
This construction is not explicit and is of high complexity.
In this section, we provide an explicit construction of a code
that has redundancy up to a constant factor times the optimal
redundancy. This construction can also be extended to a DNA
storage system that is locally recoverable.

A. Rate-optimal Codes

Definition 1. (cf. [9]) A code C ⊂ XLM is called an (s, t) error-
correcting code, if it can correct up to s losses of sequences
and edits within t sequences.

Definition 2. For any integers N, l, a,m ∈ N∗, where l ≤ N ,
a < l, the set A(N, l, a) = {A1, A2, · · · , Am} of m subsets
of [0 : N − 1] is called an (N, l, a)-set if for all 1 ≤ i ≤ m,

1) |Ai| = l.
2) ∀j 6= i and j ∈ [M], |Ai \Aj | > a.

A code C ⊂ XLM is called an (M,L, d) code if it is a
(4L,M, d)-set.

We know from [9] that any (M,L, s+ 2t) code is also an
(s, t) error-correcting code. Therefore our objective is to find
efficient (M,L, d)-error-correcting codes.

Lemma 1. (cf. [9]) The optimal redundancy r(C) for any (s, t)
code C ⊂ XLM satisfies

r(C) ≥ (s+t) log(2L−M−t)+t log(M−s−t)−log(t!(s+t)!).

Lemma 1 indicates that the optimal rate of an (s, t)-code
has redundancy of O((s+t)L) symbols. Since each strand has
length L, this means that O(s+ t) out of M strands carry the
redundant information in the optimal case. In Construction 1,
we provide an (M,L, d) code with O(d) redundant strands,
which is an (s, t) code with O(s+2t) redundant strands when
d = s+ 2t.

Prior to Construction 1, we require Lemma 2 (from our
previous work [17]), in which we define a function α(q,d),
called (q, d)-parity, that maps the subsets of GF (q) onto
GF (q)2d−1. It is shown that the cardinality of the set differ-
ence between any two distinct subsets of GF (q) of the same
size is greater than d if their (q, d)-parities are identical.

α(q,d)

(·)q′
β(q′,d) f (q

′,q,d)

Fig. 3. Diagram of Construction 1.

Lemma 2. (cf. [17]) Define the (q, d)-parity of any set S ⊂
GF (q) as follows,

α1 =
∑
s∈S

s,

α2 =
∑
s∈S

s2,

...
α2d−1 =

∑
s∈S

s2d−1.

(1)

For all A,B ⊂ GF (q), |A| = |B|, if α(q,d)(A) =
α(q,d)(B), then |A \B| > d.

Fig. 3 depicts the main idea of Construction 1. We con-
struct a code C1 with the assistance of an auxiliary code
CH(n, (2k− 1)d, d+1)q′ , which is defined on a smaller field
GF (q′) (the auxiliary field), q′ ≤ q

1
2 , q′ = 2L

′
for some

L′ ∈ N, has minimum Hamming distance d+ 1, and encodes
(2k− 1)d symbols into n symbols, where k = d 2L

log q′ e. Here,
we partition the nonzero elements of GF (q), q = 4L, into two
parts I1, I2. Among the M strands contained in S ⊂ XLM ,
M − n strands from I1 carry the raw information, and the
remaining n strands from I2 carry the redundant information.

1) For any subset A of I1 with cardinality M −n, compute
the (q, d)-parity α(q,d)(A). α(q,d)(A) is a vector on
GF (q) of length 2d− 1.

2) Represent α(q,d)(A) as a vector on GF (q′) of length
k(2d− 1) and denote it by

(
α(q,d)(A)

)
q′

.
3) β(q′,d) maps

(
α(q,d)(A)

)
q′

into a codeword c(A) in
CH(n, (2k − 1)d, d + 1)q′ . c(A) is a vector of length
n on GF (q′).

4) f (q
′,q,d) maps c(A) to a subset f(A) of I2 with cardi-

nality n.
5) The codeword of A is g(A) = A ∪ f(A).
In Lemma 3, we provide an injection f (q

′,q,d) so that the
image of f (q

′,q,d) is an (nq′, n, d)-set. Then for any distinct
A,B ⊂ I1, either |A \ B| > d or |f(A) \ f(B)| > d, which
means that the resultant |g(A)\g(B)| > d. Let d = s+2t, we
construct an (s, t) code with n = k(2d−1)+d = (2k+1)(s+
2t)−k redundant strands. When k = 2 and q′ = 2L, there are
5(s+2t)−2 redundant strands, and the code is order-optimal.

Lemma 3. Suppose M,L, d are given, q = 4L. Given
q′ ≤ q

1
2 , let k = d 2L

log q′ e, n = (2k + 1)d − k. Suppose
CH(n, n−d, d+1)q′ is a Reed Solomon code of length n with
d redundant symbols. There is a bijection γ : [n]×GF (q′)→
[nq′]. Define f (q

′,q,d) : CH(n, n − d, d + 1)q′ → [nq′] by
f (q
′,q,d) : (c1, c2, · · · , cn) → {γ((i, ci))|1 ≤ i ≤ n}. Then

Im(f), i.e., the image of f , is an (nq′, n, d)-set.

Proof. For any distinct c1, c2 ∈ CH(n, n − d, d + 1)q′ , we
only need to prove |f (q′,q,d)(c1)\f (q

′,q,d)(c2)| ≥ d+1. Since
CH(n, n − d, d + 1)q′ is a Reed Solomon code, c1 6= c2,
dH(c1, c2) ≥ d+1. Suppose c1 = (c1,1, c1,2, · · · , c1,n), c2 =
(c2,1, c2,2, · · · , c2,n). Since γ is an injection, |f (q′,q,d)(c1) \
f (q
′,q,d)(c2)| = |{(i, c1,i)|1 ≤ i ≤ n} \ {(i, c2,i)|1 ≤ i ≤

n}| = |{i|c1,i 6= c2,i, 1 ≤ i ≤ n}| = dH(c1, c2) ≥ d+ 1. �

We denote the (M,L, d)-error correcting codes constructed
with an auxiliary field GF (q′) by C1(M,L, d)q′ .

Construction 1. Suppose M,L, d are given, and let q = 4L.
Given q′ ≤ q

1
2 , let k = d 2L

log q′ e, n = (2k + 1)d − k.
Define g on the set of all subsets of

[
nq′ : 4L − 1

]
by

g : A 7→ A ∪ (f (q
′,q,d) (c(A))), where c(A) is the codeword

β(q′,k,d)
((
α(q,d)(A)

)
q′

)
. Then C1(M,L, d)q′ = {g(A)|A ⊂[

nq′, 4L − 1
]
, |A| =M − n} is an (M,L, d)-code.

Proof. For any A,B ⊂
[
nq′, 4L − 1

]
, |A| = |B| = M − n,

A 6= B, we only need to prove that |g(A)\g(B)| ≥ d+1. For
simplicity, we denote f (q

′,q,d) by f in this proof. Notice that
neither f(c(A)) nor f(c(B)) has nonzero intersection with
either A or B. Therefore |g(A)\g(B)| = |A\B|+ |f(c(A))\
f(c(B))|. There are two cases:

1) α(q,d)(A) = α(q,d)(B). Then Lemma 2 implies that |A \
B| ≥ d+ 1. Then |g(A) \ g(B)| ≥ |A \B| ≥ d+ 1.

2) α(q,d)(A) 6= α(q,d)(B). Then the q′-ary representations(
α(q,d)(A)

)
q′
6=
(
α(q,d)(B)

)
q′

, and their corresponding
codewords c(A), c(B) in CH((2k + 1)d − k, k(2d −
1), d + 1)q′ are non-equal. Then Lemma 3 implies that
|f(c(A))\f(c(B))| > d, thus |g(A)\g(B)| ≥ |f(c(A))\
f(c(B))| ≥ d+ 1.

�

Example 1. Let M = 60, L = 4, d = 3. Then q = 4L = 256.
Let q′ = 16. Therefore k = 2, n = (2k + 1)d − k = 13,
|A| = M − n = 47, A ⊂ [nq′ : q − 1] = [208 : 255].
Then the number of codewords is

(
255−208+1

47

)
= 48.

Suppose A(s) = [208 : 255] \ {207 + s}, 1 ≤ s ≤ 48.
Then the corresponding codeword of A(s) is
cs = A(s) ∪ f(A(s)), 1 ≤ s ≤ 48, where f(A(s))
are defined as follows, using Construction 1:

f(A(1)) = {16, 32, 47, 51, 67, 87, 107, 127, 135, 152, 166, 181, 203},
f(A(2)) = {15, 17, 43, 59, 68, 85, 99, 116, 134, 159, 172, 189, 206},
f(A(3)) = {15, 18, 43, 60, 67, 87, 99, 115, 134, 149, 168, 183, 195},
f(A(4)) = {15, 19, 43, 63, 77, 81, 100, 116, 134, 149, 162, 184, 201},
f(A(5)) = {15, 20, 43, 64, 78, 85, 100, 115, 133, 157, 163, 184, 199},
f(A(6)) = {15, 21, 44, 59, 78, 95, 100, 127, 138, 154, 167, 187, 198},
f(A(7)) = {15, 22, 44, 60, 78, 89, 100, 128, 137, 155, 170, 191, 194},
f(A(8)) = {15, 23, 44, 63, 66, 91, 99, 127, 143, 154, 162, 185, 202},
f(A(9)) = {15, 24, 44, 64, 66, 91, 99, 128, 143, 153, 162, 183, 205},

f(A(10)) = {15, 25, 47, 59, 71, 87, 111, 127, 142, 150, 168, 188, 205},
f(A(11)) = {15, 26, 47, 60, 68, 93, 111, 128, 130, 155, 166, 188, 193},
f(A(12)) = {15, 27, 47, 63, 68, 83, 112, 127, 142, 153, 169, 192, 203},
f(A(13)) = {15, 28, 47, 64, 71, 95, 112, 128, 129, 150, 166, 182, 200},
f(A(14)) = {15, 29, 48, 59, 66, 82, 112, 116, 143, 154, 169, 181, 198},
f(A(15)) = {15, 30, 48, 60, 70, 96, 112, 115, 132, 160, 170, 187, 195},
f(A(16)) = {15, 31, 48, 63, 72, 86, 111, 116, 138, 159, 171, 186, 203},
f(A(17)) = {15, 32, 48, 64, 68, 94, 111, 115, 134, 155, 165, 190, 205},
f(A(18)) = {14, 17, 45, 52, 74, 94, 110, 124, 134, 147, 165, 177, 199},
f(A(19)) = {14, 18, 45, 51, 78, 87, 110, 123, 138, 145, 172, 184, 202},
f(A(20)) = {14, 19, 45, 56, 72, 92, 109, 124, 138, 147, 163, 189, 193},
f(A(21)) = {14, 20, 45, 55, 68, 87, 109, 123, 133, 147, 163, 178, 207},
f(A(22)) = {14, 21, 46, 52, 79, 90, 109, 119, 130, 153, 172, 190, 202},
f(A(23)) = {14, 22, 46, 51, 76, 87, 109, 120, 141, 148, 168, 181, 206},
f(A(24)) = {14, 23, 46, 56, 68, 96, 110, 119, 139, 147, 161, 185, 199},
f(A(25)) = {14, 24, 46, 55, 71, 87, 110, 120, 135, 156, 164, 188, 196},
f(A(26)) = {14, 25, 41, 52, 68, 93, 98, 119, 138, 159, 169, 190, 202},
f(A(27)) = {14, 26, 41, 51, 68, 96, 98, 120, 138, 154, 170, 177, 198},
f(A(28)) = {14, 27, 41, 56, 72, 91, 97, 119, 134, 154, 172, 191, 205},
f(A(29)) = {14, 28, 41, 55, 72, 96, 97, 120, 133, 157, 166, 186, 194},
f(A(30)) = {14, 29, 42, 52, 78, 86, 97, 124, 131, 160, 166, 186, 200},
f(A(31)) = {14, 30, 42, 51, 77, 83, 97, 123, 132, 146, 168, 187, 193},
f(A(32)) = {14, 31, 42, 56, 75, 84, 98, 124, 138, 147, 172, 180, 204},
f(A(33)) = {14, 32, 42, 55, 76, 83, 98, 123, 138, 159, 167, 187, 206},
f(A(34)) = {13, 17, 46, 63, 74, 81, 106, 120, 140, 155, 175, 186, 203},
f(A(35)) = {13, 18, 46, 64, 78, 87, 106, 119, 131, 149, 166, 179, 207},
f(A(36)) = {13, 19, 46, 59, 65, 93, 105, 120, 144, 160, 166, 181, 193},
f(A(37)) = {13, 20, 46, 60, 69, 93, 105, 119, 136, 148, 162, 182, 198},
f(A(38)) = {13, 21, 45, 63, 73, 94, 105, 123, 130, 145, 174, 181, 193},
f(A(39)) = {13, 22, 45, 64, 78, 96, 105, 124, 138, 152, 166, 178, 208},
f(A(40)) = {13, 23, 45, 59, 67, 82, 106, 123, 131, 160, 172, 177, 196},
f(A(41)) = {13, 24, 45, 60, 72, 86, 106, 124, 140, 155, 173, 192, 206},
f(A(42)) = {13, 25, 42, 63, 75, 94, 102, 123, 135, 145, 170, 186, 199},
f(A(43)) = {13, 26, 42, 64, 75, 84, 102, 124, 132, 156, 173, 185, 194},
f(A(44)) = {13, 27, 42, 59, 74, 82, 101, 123, 131, 147, 168, 188, 208},
f(A(45)) = {13, 28, 42, 60, 74, 90, 101, 124, 135, 156, 174, 177, 202},
f(A(46)) = {13, 29, 41, 63, 67, 94, 101, 120, 132, 146, 169, 190, 206},
f(A(47)) = {13, 30, 41, 64, 68, 88, 101, 119, 136, 148, 175, 179, 194},
f(A(48)) = {13, 31, 41, 59, 67, 82, 102, 120, 129, 154, 172, 183, 206}.

In this example, we have |ci \ cj | ≥ d + 1 = 4, for all
1 ≤ i < j ≤ 48.

In Theorem 1, we analyze the redundancy of C1(M,L, d)q′ .
Compared to the lower bound provided by Lemma 1, the
redundancy of our construction is up to a constant factor times
the smallest redundancy.

Theorem 1. Given q′ ≤ q 1
2 , let k = d 2L

log q′ e, n = (2k+1)d−
k. If Mq′ < 4L−M +n, then C1(M,L, d)q′ has redundancy
r(C1(M,L, d)q′) < n(2L+ 1) bits.

Proof. The redundancy of C1(M,L, d)q′ can be computed by
the following equation:

r(C1(M,L, d)q′) = log

(
4L

M

)
− log

(
4L − nq′

M − n

)
=

M∑
i=1

log(4L − i+ 1)−
M−n∑
i=1

log(4L − nq′ − i+ 1)

− logM ! + log(M − n)!

=

M−n∑
i=1

log

(
1 +

nq′

4L − nq′ − i+ 1

)

Fig. 4. Structure of Locally Recoverable Codes for DNA Storage.

+

n−1∑
i=0

log(4L −M + n− i)−
n∑
i=1

log(M − i+ 1)

<
nq′(M − n)

4L − nq′ −M + n
+ 2nL

<n+ 2nL = n(2L+ 1).

�

Theorem 1 indicates that C1(M,L, d)q′ has an order-optimal
redundancy. This code is explicitly constructible. In the decod-
ing process, we first compute the (q, d)-parity α(q,d)(A), and
then we derive the set A by the algorithm in [17].

B. Locally Recoverable Codes

Although Construction 1 has a high code-rate, both the
decoding and writing procedures involve decoding and writing
the entirety of the data stored in the system, which is not
efficient when only a particular part of the data is of interest.
In Construction 2, we provide a code C2 where the information
is stored in m disjoint subsets of a codeword, and each subset
has minimum set difference cardinality d1 + 1 when C2 has
minimum set difference cardinality d2 + 1. The rate of the
code is analyzed in Theorem 2.

Definition 3. For any code C ⊂ XLM , d1, d2 ∈ N, d1 < d2:
suppose D = {pi}mi=1 is a set of distinct strings of symbols
from an alphabet of size 4 with length t. Then, C is called
an (m,M,L, d1, d2)-error-correcting code if the following
conditions hold:

1) C itself is an (M,L, d2)-code;
2) Each Ai is an (|Ai|, L1, d1)-code, where Ai = {T |T =
{c|(pi, c) ∈ S, S ∈ C}}, L1 = L− t, for 1 ≤ i ≤ m.

Fig. 4 depicts the main idea of Construction 2, where a
construction of an (m,M,L, d1, d2)-code is presented. The
original file is divided into m different parts, where each
part is encoded into a set Si of M−l2

m strands by the code
C1(M−l2m , L − t, d1)q1 , where M−l2

m is an integer. Then each
strand in Si is appended to a primer pi of length t, for all
1 ≤ i ≤ m, and we obtain a set S of M − l2 distinct strands
of length L, from which we can obtain a set of M distinct
strands of length L by the code C1(M,L, d2)q2 . Here q1, q2
refer to the size of the auxiliary field of C1(M−l2m , L− t, d1)q1
and C1(M,L, d2)q2 , respectively. We denote this code by
C2(m,M,L, d1, d2)q1,q2 , and C2 is defined on GF (q). In order
to decode the i-th part, we only need to filter out the strands
with primer pi, which can be done with current sequencing

methods [3]. Then the information can be decoded since the re-
maining parts of those strands constitute an (M−l2m , L−t, d1)-
code. When the local decoding fails, we can still decode
by accessing all the strands, since the overall code is an
(M,L, d2) code.

Construction 2. Suppose m, d1, d2,M,L, q1, q2 ∈ N are
given, q = 4L, and q1, q2 < q

1
2 . Find t ∈ N such that

t ≥ 1
2 logm. Let L1 = L − t, k1 = d 2L1

log q1
e, l1 =

(2k1 + 1)d1 − k1, k2 = d 2L
log q2

e, l2 = (2k2 + 1)d2 − k2.
Suppose m|(M − l2). Suppose D is a set of m distinct strings
of symbols from an alphabet of size 4 with length t. Let
E = {S|S = {(p, c)|p ∈ D, c ∈ C1(q1, M−l2m , L1, d1)}} and
C2(m,M,L, d1, d2)q1,q2 = {S ∪ f (q2,q,d2)(S)|S ∈ E}. Then
C2(m,M,L, d1, d2)q1,q2 is an (m,M,L, d1, d2) code.

Theorem 2. If Mq2 < 4L−M+l2, (M−l2m)q1 < 4L1−M−l2m +
l1, and q1 ≥ 4, then C2(m,M,L, d1, d2)q1,q2 has redundancy
r(C2(m,M,L, d1, d2)q1,q2) < l2(2L + 1) +ml1(2L1 + 1) +
M(2t− logm+ 1) bits.

Proof. Let k1 = d 2L1

log q1
e, k2 = d 2L

log q2
e, l1 = (2k1+1)d1−k1,

l2 = (2k2 + 1)d2 − k2. We know that M−l2
m ≥ l1 + 1 ≥

5d1 − 2 + 1 ≥ 4. The redundancy of C2(m,M,L, d1, d2)q1,q2
can be computed by the following equation:

r(C2(m,M,L, d1, d2)q1,q2)

= log

(
4L

M

)
−m log

(
4L1 − l1q1
M−l2
m − l1

)
= log

(
4L

M

)
− log

(
4L − l2q2
M − l2

)
+ log

(
4L − l2q2
M − l2

)
−m log

(
4L1

M−l2
m

)
+m

(
log

(
4L1

M−l2
m

)
− log

(
4L1 − l1q1
M−l2
m − l1

))
(a)
<l2(2L+ 1) +ml1(2L1 + 1)

+

M−l2∑
i=1

log(4L − l2q2 + 1− i)− log(M − l2)!

−m

M−l2
m∑
i=1

log(4L1 − i+ 1) +m log(
M − l2
m

)!

<l2(2L+ 1) +ml1(2L1 + 1)

+m log(
M − l2
m

)!− log(M − l2)!

+m

M−l2
m∑
i=1

log
4L − l2q2 − (i− 1)m

4L1 − i+ 1

<l2(2L+ 1) +ml1(2L1 + 1) + (M − l2)2t

+m

M−l2
m∑
i=1

log

(
1 +

(i− 1)(4t −m)− l2q2
4L − (i− 1) · 4t

)

+m

(
(
M − l2
m

+
1

2
) log

M − l2
m

− M − l2
m

log e+ log e

)
− (M − l2 +

1

2
) log(M − l2) + (M − l2) log e− log

√
2π

<l2(2L+ 1) +ml1(2L1 + 1) + (M − l2)2t

+m

M−l2
m∑
i=1

(i− 1)(4t −m)− l2q2
4L − (i− 1) · 4t

+
m− 1

2
log(M − l2)− (M − l2 +

m

2
) logm+m log e

<l2(2L+ 1) +ml1(2L1 + 1) + (M − l2)(2t− logm)

+m

M−l2
m∑
i=1

i− 1
M−l2
m (q1 + 1)− l1 − i

+
m

2
log

e2(M − l2)
m

<l2(2L+ 1) +ml1(2L1 + 1) + (M − l2)(2t− logm)

+m

M−l2
m∑
i=1

2i− 1
M−l2
m q1

+ (M − l2)
1

2M−l2m

log
e2(M − l2)

m

<l2(2L+ 1) +ml1(2L1 + 1) + (M − l2)(2t− logm)

+m

(
M − l2
m

)2
1

M−l2
m q1

+ (M − l2)
1

8
log(4e2)

<l2(2L+ 1) +ml1(2L1 + 1) +M(2t− logm+ 1).

Here (a) is true by applying Theorem 1 to this lemma. �

Although Construction 2 has low redundancy, it has two
other drawbacks. First, the mapping of the information to the
codewords does not preserve the distance. A single edit in the
codeword might result in a huge deviation from the original
information, and a single bit change in the original file will
also require rewriting a large number of strands. In the next
section, we therefore focus on linear block codes, where the
information can be stored by a systematic code, which are
easier to rewrite and to decode.

IV. LOCALLY RECOVERABLE LINEAR BLOCK CODES

In this section, we study the locality of linear block codes.
Suppose the first t symbols in each DNA strand form an
unique primer, and the remaining L1 = L − t symbols
contain the original information. Then, the order of the subsets
is determined by the primers; the set of codewords can be
regarded as a code of length M in GF (4L1).

Definition 4. A linear block code C defined on GF (q) is called
an (m,n, k, d1, d2)q-code if C maps the information vector of
mk symbols into codewords of mn symbols with the form
c = (c1, c2, · · · , cm), where cm ∈ GF (q)n, with an overall
minimum distance d2 and a minimum distance d1 of each ci.

Lemma 4 is a known result from e.g., [18], which provides
an upper bound of the global minimum distance of a code for
a fixed local minimum distance. While the construction in [18]
is indeed locally recoverable, it is not systematic. We provide
in Construction 3 a general construction of locally recoverable
codes that is systematic, both locally and globally, and which
is more appropriate to be applied in DNA storage.

Lemma 4. For an (m,n, k, d1, d2)q-code, let r = n − k.
For δ ∈ N, δ < r, if d2 ≤ n + 1, d1 = r − δ + 1, then
d2 ≤ r + (m− 1)δ + 1.

Definition 5. A matrix X ∈ GF (q)u×v is called a good
matrix if every k × k submatrix of X , 1 ≤ k ≤ min{u, v}, is
nonsingular.

Lemma 5. Suppose a1, · · · , au, b1, · · · , bv are pairwise dis-
tinct elements in GF (q), then the following matrix is a good
matrix, 

1
a1−b1

1
a1−b2 · · · 1

a1−bv
1

a2−b1
1

a2−b2 · · · 1
a2−bv

...
...

. . .
...

1
au−b1

1
au−b2 · · · 1

au−bv

 .
Proof. For 1 ≤ k ≤ min{u, v}, denote the submatrix gen-
erated by the intersection of the i1, · · · , ik-th rows and the
j1, · · · , jk-th columns by A. Then,

A =


1

a1−b1
1

a1−b2 · · · 1
a1−bk

1
a2−b1

1
a2−b2 · · · 1

a2−bk
...

...
. . .

...
1

ak−b1
1

ak−b2 · · · 1
ak−bk

 .
We know that

det(A) =

∏
1≤i<j≤n

(ai − aj)
∏

1≤i<j≤n
(bj − bi)

k∏
i,j=1

(ai − bj)
6= 0 ∈ GF (q).

Therefore, A is nonsingular. �

Lemma 6. Let m,n, p, r ∈ N, m > n > r, A ∈ GF (q)m×n,
and B ∈ GF (q)m×p. Define matrix C,D,E as follows. If A
is a good matrix, then any n rows from each matrix are all
linearly independent.

C =

[
A
−In

]
, D =

[
A

−Ir 0n−r

]
, E =

[
A B
−In+p

]
.

Proof. Suppose there exist n rows from C that are lin-
early dependent. Suppose a of these linearly dependent rows
r1, · · · , ra are from A, and the other n−a rows ra+1, · · · , rn
are from −In, where 0 < a ≤ n. Suppose the entries of
−1 in ra+1, · · · , rn are in the j1, · · · , jn−a-th columns of
C. Suppose [n] \ {j1, · · · , jn−a} = {c1, · · · , ca}. Then the
a × a submatrix generated by the intersection of the rows
r1, · · · , ra and the c1, · · · , ca-th columns of A is singular. A
contradiction!

Suppose there exist n rows from D that are linearly depen-
dent. Suppose a of these linearly dependent rows r1, · · · , ra
are from A, and the other n − a rows ra+1, · · · , rn are
from [−Ir 0n−r], where n − r ≤ a ≤ n. Suppose the
entries of −1 in ra+1, · · · , rn are in the j1, · · · , jn−a-th
columns of C, then jk ≤ r for all 1 ≤ k ≤ r. Suppose
[n]\{j1, · · · , jn−a} = {c1, · · · , ca}. Then the a×a submatrix

generated by the intersection of the rows r1, · · · , ra and the
c1, · · · , ca-th columns of A is singular. A contradiction!

Suppose there exist n rows from E that are linearly depen-
dent. Suppose a of these linearly dependent rows r1, · · · , ra
are from the first m+n rows of E, n−a rows ra+1, · · · , rn−a
are from [0n − Ip], where 0 < a ≤ n. From the previous
discussion of matrix C, we know that a ≥ n+1, which means
that n > a ≥ n+ 1. A contradiction! �

Construction 3. Let n, k,m, r, δ ∈ N, r = n − k, k > r +
(m − 1)δ, 0 < δ < r, and suppose Ai,j ∈ GF (q)k×n for all
1 ≤ i, j ≤ m. Define G ∈ GF (q)mk×mn as follows,

G =


Ik A1,1 0k A1,2 · · · 0k A1,m

0k A2,1 Ik A2,2 · · · 0k A2,m

...
...

...
...

. . .
...

...
0k Am,1 0k Am,2 · · · Ik Am,m

 .
Suppose Ai,j = Bi,jXi,jUj , 1 ≤ i, j ≤ m, i 6= j, for some
Bi,j ∈ GF (q)k×δ , Xi,j ∈ GF (q)δ×δ , Uj ∈ GF (q)δ×r, such
that the following conditions are satisfied:

1) rank(Bi,j) = rank(Uj) = rank(Xi,j) = δ, where
rank(·) refers to the rank of the matrix in GF (q);

2) [Ai,i, Bi,1, · · · , Bi,m], 1 ≤ i ≤ m, are good matrices;
3)
[
ATi,i, U

T
i

]
, 1 ≤ i ≤ m, are good matrices.

Then, G is the generator matrix of an (m,n, k, r− δ+1, d)q-
code, where d ≥ min{r + (m− 1)δ + 1, 2(r − δ + 1)}.

Moreover, denote the matrix consisting of the first δ columns
of Aj,j by Bj,j , and that consisting of the first δ columns of
Uj by Cj . If the following matrix B is good and Xi,j = C−1j ,
then d ≥ min{r+(m−1)δ+1,max{2(r− δ+1),mδ+1}},

B =


B1,1 B1,2 · · · B1,m

B2,1 B2,2 · · · B2,m

...
...

. . .
...

Bm,1 Bm,2 · · · Bm,m

 .
Proof. First we prove that d1 = r−δ+1, i.e., every subblock
has minimum Hamming distance d1 = r − δ + 1. Suppose
the parity check matrix for the j-th block is Hj , 1 ≤ j ≤ m.
Then the following equation follows,

[Ik Aj,j]Hj = 0, [0 Ai,j]Hj = 0.

Therefore,

Hj =

[
Aj,j
−Ir

]
Vj ,

for some Vj ∈ GF (q)r×t, rank(Vj) = t, t ≤ r. From
[0, Ai,j]Hj = 0, we know that Bi,jXi,jUjVj = 0. Given that
rank(Bi,j) = rank(Xi,j) = δ, and Bi,jXi,j ∈ GF (q)k×δ ,
we have UjVj = 0 and R(Uj) = N (V Tj).

Suppose ujHj = 0 for some uj ∈ GF (q)n, uj 6= 0, we
know that

0 = uj

[
Aj,j
−Ir

]
Vj =⇒ uj

[
Aj,j
−Ir

]
= sjUj ,

for some sj ∈ GF (q)δ .
Therefore,

0 = [uj ,−sj]

 Aj,j
−Ir
Uj

 .
Then from Lemma 6, wH(uj) + wH(sj) =

wH([uj ,−sj]) ≥ r + 1. Given that wH(sj) ≤ δ, we
have wH(uj) ≥ r− δ + 1, which means that d1 ≥ r− δ + 1.

Moreover, since the matrix ETj =
[
ATj,j , U

T
j

]
is good, any

r different rows of Ej are linearly independent. Therefore
consider the matrix Fj containing the last r + 1 rows of
Ej , we know that there exists a vector xj = [vj ,hj], where
vj ∈ GF (q)r−δ+1, hj ∈ GF (q)δ , such that xjFj = 0, and
xj has no zero entries. Let uj =

[
0k−r+δ−1,vj , 0

r
]
, then,

[uj ,hj]

 Aj,j
−Ir
Uj

 = xjFj = 0,

which means that

uj

[
Aj,j
−Ir

]
Vj = −hjUjVj = 0,

which means that uj is a nonzero codeword of the j-th
subblock, and wH(uj) = wH(vj) = r − δ + 1. Therefore
d1 = r − δ + 1.

Secondly, we prove that d ≥ min{r+(m−1)δ+1, 2(r−δ+
1)}. Suppose u = (u1, · · · ,um) is a nonzero codeword, for
some u ∈ GF (q)mn, uj ∈ GF (q)n, and for all 1 ≤ j ≤ m.
Suppose the parity check matrix of this code is H . Define H
as follows:

H =



A1,1 A1,2 · · · A1,m

−Ir 0r · · · 0r
A2,1 A2,2 · · · A2,m

0r −Ir · · · 0r
...

...
. . .

...
Am,1 Am,2 · · · Am,m
0r 0r · · · −Ir


.

Suppose ∃j, 1 ≤ j ≤ m, such that uj 6= 0, and ui = 0, for
all 1 ≤ i ≤ m, i 6= j. Then uj satisfies that:

uj

[
Aj,j
−Ir

]
= 0,uj

[
Ai,j
0r

]
= 0⇐⇒ uj

[
Bi,j
0δ

]
= 0.

Therefore,

uj

[
Aj,j B1,j · · · Bj−1,j Bj+1,j · · · Bm,j
−Ir 0(m−1)δ

]
= 0.

From Lemma 6, we know that wH(u) = wH(uj) ≥ r +
(m− 1)δ + 1.

Suppose ∃i, j, 1 ≤ i < j ≤ m, such that ui 6= 0, and uj 6=
0. Then wH(u) ≥ wH(ui) + wH(uj) ≥ 2d1 = 2(r − δ + 1).

Therefore, d = minwH(u) ≥ min{r+(m−1)δ+1, 2(r−
δ + 1)}.

Lastly, we prove that d ≥ mδ+1 given that B is good and
Xi,j = C−1j in GF (q), where Cj is the matrix consisting of
the first δ columns of Uj .

Rearrange the rows and columns of H to obtain H̃ , namely,
∃ permutation matrices P,Q such that PHQ = H̃ , where

H̃ =

 B A
−Imδ 0m(r−δ)
0mδ −Im(r−δ)

 .
Then for every nonzero codeword u, let ũ = uP−1, we

have ũH̃ = 0 and ũ 6= 0. From Lemma 6, wH(u) =
wH(ũ) ≥ mδ + 1. �

Theorem 3. Suppose a1, · · · , amk+δ, b1, · · · , bmr are pair-
wise distinct elements in GF (q). Define Aj,j , Bi,j , Uj , Xi,j

as follows, for all 1 ≤ i, j ≤ m, i 6= j, in Construction 3, then
G is the generator matrix of an (m,n, k, r− δ + 1, d)q-code,
where d ≥ min{r+(m−1)δ+1,max{2(r−δ+1),mδ+1}}:

Aj,j = Y ((j − 1)k, jk, (j − 1)r, jr),

Bi,j = Y ((i− 1)k, ik, (j − 1)r, (j − 1)r + δ),

Uj = Y (mk,mk + δ, (j − 1)r, jr),

Xi,j = Y (mk,mk + δ, (j − 1)r, (j − 1)r + δ)−1,

where the matrices Y (i1, i2, j1, j2) for 0 ≤ i1 < i2 ≤ mk+δ,
0 ≤ j1 < j2 ≤ mr are defined as below,

Y (i1, i2, j1, j2) =

=


1

ai1+1−bj1+1

1
ai1+1−bj1+2

· · · 1
ai1+1−bj2

1
ai1+2−bj1+1

1
ai1+2−bj1+2

· · · 1
ai1+2−bj2

...
...

. . .
...

1
ai2−bj1+1

1
ai2−bj1+2

· · · 1
ai2−bj2

.

Proof. It follows immediately from Construction 3 and
Lemma 5. �

In Theorem 3, we proposed an explicit construction of a
systematic (m,n, k, r − δ + 1, d)q-code, where d ≥ min{r +
(m−1)δ+1,max{2(r− δ+1),mδ+1}}. This code has two
properties that make it suitable for rewritable random-access
DNA storage. First, the code is systematic, which means that
a single edit of the message results in rewriting at most mr
DNA strands. Second, each information vector can be derived
directly from the corresponding subblock when there are at
most r− δ local errors within that subblock. When δ ≤ r+1

m+1 ,
the global minimum distance is r + (m − 1)δ + 1, which
reaches the upper bound provided in Lemma 4. The following
Theorem 4 proves the existence of a code that reaches the
upper bound for any δ < r, provided that the alphabet size
is large enough. Future discussion includes finding explicit
constructions that reach the upper bound for arbitrary δ < r.

Theorem 4. For any δ,m, n, k ∈ N, let r = n−k, and suppose
δ < r. If q > mn+δ+(r + (m− 1)δ − 1)

(
mn−1

r+(m−1)δ
)
−(mr−

1)
(

mn−2
r+(m−1)δ−1

)
, then there exist pairwise distinct elements

α1, · · · , αmk+δ, b1, · · · , bmr from GF (q) such that Theorem 3
presents a generator matrix of an (m,n, k, r−δ+1, r+(m−
1)δ + 1)q-code.

Proof. The condition d2 ≥ r + (m− 1)δ + 1 is true if every
(r + (m − 1)δ − a) × (mr − a) submatrix of the submatrix
A(s) has linearly independent rows, for all 1 ≤ s ≤ mr,
where A(s) refers to the submatrix consisting of the first s
columns of the following matrix A,

A =


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

. . .
...

Am,1 Am,2 · · · Am,m

 .
First, choose arbitrary pairwise distinct elements

a1, a2, · · · , amk+δ , and b1, · · · , b(m−1)(r−δ), from GF (q).
Suppose b1, · · · , bs, (m−1)(r−δ) ≤ s < mr are determined,
and every (r + (m − 1)δ − a) × (mr − a) submatrix of the
submatrix A(s+1) has linearly independent rows. Then all the
elements in the s+1-th column are either 1

ai−bs+1
, 1 ≤ i ≤ mk,

or a linear combination of 1
ai−bs+1

, mk + 1 ≤ i ≤ mk + δ,
and every (r + (m− 1)δ − a)× (mr − a) submatrix has the
following form:

C =


b1 f1(bs+1)
b2 f2(bs+1)
...

...
br+(m−1)δ−a fr+(m−1)δ−a(bs+1)

 ,
where bi ∈ GF (q)mr−a−1, and any r + (m − 1)δ − a − 1

rows from {bi}r+(m−1)δ−a
i=1 are linearly independent; and

fi(bs+1), 1 ≤ i ≤ r + (m − 1)δ − a, is either 1
ai−bs+1

,
1 ≤ i ≤ mk, or a linear combination of 1

ai−bs+1
, mk + 1 ≤

i ≤ mk + δ. Then if C has linearly dependent rows, i.e.,
∃b ∈ GF (q)r+(m−1)δ−a, such that bC = 0. We know that
the nullspace of

[
bT1 , b

T
2 , · · · , bTr+(m−1)δ−a

]
has dimension

at most 1, it could only be {γb, γ ∈ GF (q)}. Suppose
b = (β1, · · · , βr+(m−1)δ−a), then,

r+(m−1)δ−a∑
i=1

βifi(bs+1) = 0,

which means that bs+1 is a root of a polynomial of degree less
than r +mδ − a, and thus there are at most r +mδ − a− 1
elements such that C has linearly dependent rows. Since there
are
(

mk
r+(m−1)δ−a

)(
s

mr−a−1
)

choices of C, there exists a bs+1

such that any (r+(m− 1)δ−a)× (mr−a) submatrix of the
following matrix A has linearly independent rows as long as:

q >mk + δ + s+

r+(m−1)δ∑
a=0

(r + (m− 1)δ − a− 1)(
mk

r + (m− 1)δ − a

)(
s

mr − a− 1

)
.

Therefore, given the following inequality, there exist
pairwise distinct elements α1, · · · , αmk+δ, b1, · · · , bmr from
GF (q) such that Theorem 3 presents a generator matrix of an
(m,n, k, r − δ + 1, r + (m− 1)δ + 1)-code:

q ≥mk + δ +mr +

r+(m−1)δ∑
a=0

(r + (m− 1)δ − a− 1)(
mk

r + (m− 1)δ − a

)(
mr − 1

mr − a− 1

)
=mn+ δ + (r + (m− 1)δ − 1)

(
mn− 1

r + (m− 1)δ

)
− (mr − 1)

(
mn− 2

r + (m− 1)δ − 1

)
.

�

Example 2. Suppose M = 4, m = 2, r = 2, δ = 1, k = 3,
n = k + r = 5. Then mk + δ = 7 and mr = 4. Suppose
q = 16 > 7+4. Let ai = i, 1 ≤ i ≤ 7, bj = 7+ j, 1 ≤ j ≤ 4.
Therefore the following G ∈ GF (q)6×10 is the generating
matrix of a (2, 5, 3, 2, 4)16-code.

G =


1 0 0 2 15 0 0 0 1 11
0 1 0 12 5 0 0 0 6 15
0 0 1 5 12 0 0 0 11 9
0 0 0 6 12 1 0 0 3 8
0 0 0 3 6 0 1 0 8 3
0 0 0 7 14 0 0 1 10 4

 .

V. CONCLUSION

In this paper, we studied codes for DNA storage systems
from two aspects. We first presented a class of rate-efficient
codes that have redundancy up to a constant factor times the
optimal redundancy. Then, we extended our construction to
be locally recoverable. While these constructions are rate-
efficient, they are not distance preserving and they have high
complexity in the decoding and rewriting processes, especially
compared to linear block codes. We then discussed locally
recoverable linear block codes. We proved the existence of
such codes where the global minimum distance reaches the
upper bound, given a prescribed local minimum distance and
a fixed redundancy, for a large enough alphabet size. Future
work will focus on designing explicit locally recoverable linear
block codes or LDPC codes that can be used in DNA storage
systems.

ACKNOWLEDGMENT

The authors would like to thank Raghu Meka from UCLA
for helpful discussions, and Dana Watson for the suggestions
on writing. This work has received funding from DYF, NSF
under the grant CCF-BSF 1718389, and from the People
Programme (Marie Curie Actions) of the European Union’s
Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement n. PCOFUND-GA-2013-609102.

REFERENCES

[1] V. Zhirnov, R. M. Zadegan, G. S. Sandhu, G. M. Church, and W. L.
Hughes, “Nucleic acid memory,” Nature materials, vol. 15, no. 4, p.
366, 2016.

[2] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, no. 6012, 2012.

[3] L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen et al.,
“Random access in large-scale DNA data storage,” Nature biotechnol-
ogy, vol. 36, no. 3, p. 242, Mar. 2018.

[4] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146, Jun.
2016.

[5] M. Blawat, K. Gaedke, I. Huetter, X.-M. Chen, B. Turczyk, S. Inverso,
B. W. Pruitt, and G. M. Church, “Forward error correction for DNA data
storage,” Procedia Computer Science, vol. 80, pp. 1011–1022, 2016.

[6] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the DNA
data storage channel,” arXiv preprint arXiv:1803.03322, 2018.

[7] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” IEEE Trans. Inf. Theory, vol. 63, no. 8,
pp. 4982–4995, Aug. 2017.

[8] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for deletion and adjacent transposition correction,” IEEE Trans.
Inf. Theory, vol. 64, no. 4, pp. 2550–2570, April 2018.

[9] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for DNA storage,” arXiv preprint arXiv:1801.04882, 2018.

[10] S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific re-
ports, vol. 5, p. 14138, 2015.

[11] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA
storage,” June 2017, pp. 3115–3119.

[12] S. Jain, F. F. Hassanzadeh, M. Schwartz, and J. Bruck, “Duplication-
correcting codes for data storage in the DNA of living organisms,” IEEE
Trans. Inf. Theory, vol. 63, no. 8, pp. 4996–5010, Aug. 2017.

[13] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Efficient
encoding/decoding of irreducible words for codes correcting Tandem
duplications,” arXiv preprint arXiv:1801.02310, 2018.

[14] J. Shendure, S. Balasubramanian, G. M. Church, W. Gilbert, J. Rogers,
J. A. Schloss, and R. H. Waterston, “DNA sequencing at 40: past, present
and future,” Nature, vol. 550, no. 7676, p. 345, Oct. 2017.

[15] T. L. Schmidt, B. J. Beliveau, Y. O. Uca, M. Theilmann, F. Da Cruz,
C.-T. Wu, and W. M. Shih, “Scalable amplification of strand subsets
from chip-synthesized oligonucleotide libraries,” Nature communica-
tions, vol. 6, p. 8634, 2015.

[16] M. Schirmer, R. DAmore, U. Z. Ijaz, N. Hall, and C. Quince, “Illumina
error profiles: resolving fine-scale variation in metagenomic sequencing
data,” BMC bioinformatics, vol. 17, no. 1, p. 125, 2016.

[17] S. Yang, C. Schoeny, and L. Dolecek, “Order-optimal permutation
codes in the generalized Cayley metric,” in IEEE Information Theory
Workshop, Kaohsiung, Taiwan, Nov 2017, pp. 234–238.

[18] J. Han and L. A. Lastras-Montano, “Reliable memories with subline
accesses,” in Proc. IEEE Int. Symp. Inf. Theory, June 2007, pp. 2531–
2535.

